English

Find the Condition for the Following Set of Curve to Intersect Orthogonally X 2 a 2 − Y 2 B 2 = 1 and X Y = C 2 ? - Mathematics

Advertisements
Advertisements

Question

Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { and } xy = c^2\] ?

Solution

\[ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 . . . \left( 1 \right)\]

\[xy = c^2 . . . \left( 2 \right)\]

\[\text { Let the curves intersect orthogonally at }\left( x_1 , y_1 \right).\]

\[\text { On differentiating (1) on both sides w.r.t.x, we get }\]

\[\frac{2x}{a^2} - \frac{2y}{b^2}\frac{dy}{dx} = 0\]

\[ \Rightarrow \frac{dy}{dx} = \frac{x b^2}{a^2 y}\]

\[ \Rightarrow m_1 = \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) = \frac{x_1 b^2}{a^2 y_1}\]

\[\text { On differentiating (2) on both sides w.r.t.x, we get }\]

\[x\frac{dy}{dx} + y = 0\]

\[ \Rightarrow \frac{dy}{dx} = \frac{- y}{x}\]

\[ \Rightarrow m_2 = \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) = \frac{- y_1}{x_1}\]

\[\text { It is given that the curves intersect orhtogonally at }\left( x_1 , y_1 \right).\]

\[ \therefore m_1 \times m_2 = - 1\]

\[ \Rightarrow \frac{x_1 b^2}{a^2 y_1} \times \frac{- y_1}{x_1} = - 1\]

\[ \Rightarrow a^2 = b^2 \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Tangents and Normals - Exercise 16.3 [Page 41]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 16 Tangents and Normals
Exercise 16.3 | Q 8.1 | Page 41

RELATED QUESTIONS

Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is perpendicular to the line 5y − 15x = 13.


For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.


Find the slope of the tangent and the normal to the following curve at the indicted point  y = (sin 2x + cot x + 2)2 at x = π/2 ?


At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?


At what points on the curve y = 2x2 − x + 1 is the tangent parallel to the line y = 3x + 4?


Find the point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slop is \[- \frac{1}{6}\]  ?


Find the points on the curve y = x3 where the slope of the tangent is equal to the x-coordinate of the point ?


Find the equation of the normal to y = 2x3 − x2 + 3 at (1, 4) ?


Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?    


Find the equation of the tangent and the normal to the following curve at the indicated points x = a(θ + sinθ), y = a(1 − cosθ) at θ ?


Find an equation of normal line to the curve y = x3 + 2x + 6 which is parallel to the line x+ 14y + 4 = 0 ?


Determine the equation(s) of tangent (s) line to the curve y = 4x3 − 3x + 5 which are perpendicular to the line 9y + x + 3 = 0 ?


Find the equation of a normal to the curve y = x loge x which is parallel to the line 2x − 2y + 3 = 0 ?


Find the angle of intersection of the following curve  y = x2 and x2 + y2 = 20  ?


Prove that the curves y2 = 4x and x2 + y2 - 6x + 1 = 0 touch each other at the point (1, 2) ?


If the tangent to a curve at a point (xy) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?


Write the equation of the normal to the curve y = x + sin x cos x at \[x = \frac{\pi}{2}\] ?


The equation to the normal to the curve y = sin x at (0, 0) is ___________ .


The point on the curve y = x2 − 3x + 2 where tangent is perpendicular to y = x is ________________ .


The angle of intersection of the curves xy = a2 and x2 − y2 = 2a2 is ______________ .


If the curve ay + x2 = 7 and x3 = y cut orthogonally at (1, 1), then a is equal to _____________ .


The equation of the normal to the curve x = a cos3 θ, y = a sin3 θ at the point θ = π/4 is __________ .


If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .


The normal at the point (1, 1) on the curve 2y + x2 = 3 is _____________ .


The normal to the curve x2 = 4y passing through (1, 2) is _____________ .


Find the equation of tangent to the curve `y = sqrt(3x -2)` which is parallel to the line 4x − 2y + 5 = 0. Also, write the equation of normal to the curve at the point of contact.


Find the condition for the curves `x^2/"a"^2 - y^2/"b"^2` = 1; xy = c2 to interest orthogonally.


Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.


Find the angle of intersection of the curves y = 4 – x2 and y = x2.


The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.


The tangent to the parabola x2 = 2y at the point (1, `1/2`) makes with the x-axis an angle of ____________.


The tangent to the curve y = x2 + 3x will pass through the point (0, -9) if it is drawn at the point ____________.


Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.


Two vertical poles of heights, 20 m and 80 m stand apart on a horizontal plane. The height (in meters) of the point of intersection of the lines joining the top of each pole to the foot of the other, From this horizontal plane is ______.


If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points `(3cosθ, sqrt(3) sinθ)` and `(-3sinθ, sqrt(3) cos θ); θ ∈(0, π/2)`; then `(2 cot β)/(sin 2θ)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×