English

Find the Condition for the Following Set of Curve to Intersect Orthogonally X 2 a 2 + Y 2 B 2 = 1 and X 2 a 2 − Y 2 B 2 = 1 ? - Mathematics

Advertisements
Advertisements

Question

Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and } \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1\] ?

Solution

The condition for the curves \[a x^2 + b y^2 = 1 \text { and }a' x^2 + b' y^2 = 1\] to intersect orthogonally is given below :

\[\frac{1}{a} - \frac{1}{b} = \frac{1}{a'} - \frac{1}{b'}\]

\[\text { So, the condition for the curves } \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and }\frac{x^2}{A^2} - \frac{y^2}{B^2} = 1 to \text { intersect orthogonally is }\]

\[\frac{1}{\frac{1}{a^2}} - \frac{1}{\frac{1}{b^2}} = \frac{1}{\frac{1}{A^2}} - \frac{1}{\frac{- 1}{B^2}}\]

\[ \Rightarrow a^2 - b^2 = A^2 + B^2\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Tangents and Normals - Exercise 16.3 [Page 41]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 16 Tangents and Normals
Exercise 16.3 | Q 8.2 | Page 41

RELATED QUESTIONS

Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t


Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t


Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.


Find the slope of the tangent to the curve y = x3 − 3x + 2 at the point whose x-coordinate is 3.


Find the equation of all lines having slope −1 that are tangents to the curve  `y = 1/(x -1), x != 1`


Find the equation of all lines having slope 2 which are tangents to the curve `y =   1/(x- 3), x != 3`


Find the equations of all lines having slope 0 which are tangent to the curve  y =   `1/(x^2-2x + 3)`


Find the points on the curve y = x3 at which the slope of the tangent is equal to the y-coordinate of the point.


Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.


Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).


Prove that the curves x = y2 and xy = k cut at right angles if 8k2 = 1. [Hint: Two curves intersect at right angle if the tangents to the curves at the point of intersection are perpendicular to each other.]


Show that the normal at any point θ to the curve x = a cosθ + a θ sinθ, y = a sinθ – aθ cosθ is at a constant distance from the origin.


Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x} \text { at }x = 9\] ?


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  x2 + 3y + y2 = 5 at (1, 1)  ?


If the tangent to the curve y = x3 + ax + b at (1, − 6) is parallel to the line x − y + 5 = 0, find a and b ?


Find the points on the curve y = 3x2 − 9x + 8 at which the tangents are equally inclined with the axes ?


At what points on the curve y = 2x2 − x + 1 is the tangent parallel to the line y = 3x + 4?


Find the points on the curve 2a2y = x3 − 3ax2 where the tangent is parallel to x-axis ?


Find the equation of the normal to y = 2x3 − x2 + 3 at (1, 4) ?


Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[y^2 = \frac{x^3}{4 - x}at \left( 2, - 2 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3  ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { at } \left( x_1 , y_1 \right)\] ?


Show that the following set of curve intersect orthogonally x2 + 4y2 = 8 and x2 − 2y2 = 4 ?


Show that the following curve intersect orthogonally at the indicated point x2 = 4y and 4y + x2 = 8 at (2, 1) ?


Show that the following curve intersect orthogonally at the indicated point y2 = 8x and 2x2 +  y2 = 10 at  \[\left( 1, 2\sqrt{2} \right)\] ?


Write the angle between the curves y2 = 4x and x2 = 2y − 3 at the point (1, 2) ?


At what point the slope of the tangent to the curve x2 + y2 − 2x − 3 = 0 is zero


The normal to the curve x2 = 4y passing through (1, 2) is _____________ .


Show that the equation of normal at any point on the curve x = 3cos θ – cos3θ, y = 3sinθ – sin3θ is 4 (y cos3θ – x sin3θ) = 3 sin 4θ


The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.


The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:


For which value of m is the line y = mx + 1 a tangent to the curve y2 = 4x?


`"sin"^"p" theta  "cos"^"q" theta` attains a maximum, when `theta` = ____________.


The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0.


The normal at the point (1, 1) on the curve `2y + x^2` = 3 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×