Advertisements
Advertisements
Question
Show that the following curve intersect orthogonally at the indicated point y2 = 8x and 2x2 + y2 = 10 at \[\left( 1, 2\sqrt{2} \right)\] ?
Solution
\[y^2 = 8x . . . \left( 1 \right)\]
\[2 x^2 + y^2 = 10 . . . \left( 2 \right)\]
\[\text { Given point is }\left( 1, 2\sqrt{2} \right)\]
\[\text { Differentiating (1) w.r.t.x,}\]
\[2y\frac{dy}{dx} = 8\]
\[ \Rightarrow \frac{dy}{dx} = \frac{4}{y}\]
\[ \Rightarrow m_1 = \left( \frac{dy}{dx} \right)_\left( 1, 2\sqrt{2} \right) = \frac{4}{2\sqrt{2}} = \sqrt{2}\]
\[\text { Differentiating (2) w.r.t.x,}\]
\[4x + 2y\frac{dy}{dx} = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- 2x}{y}\]
\[ \Rightarrow m_2 = \left( \frac{dy}{dx} \right)_\left( 1, 2\sqrt{2} \right) = \frac{- 2}{2\sqrt{2}} = \frac{- 1}{\sqrt{2}}\]
\[\text { Since,} m_1 \times m_2 = - 1\]
Hence, the given curves intersect orthogonally at the given point.
APPEARS IN
RELATED QUESTIONS
The equation of tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x – 5. Find the values of a and b.
Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.
Find the slope of the tangent to curve y = x3 − x + 1 at the point whose x-coordinate is 2.
Find the equation of the normal at the point (am2, am3) for the curve ay2 = x3.
The line y = mx + 1 is a tangent to the curve y2 = 4x if the value of m is
(A) 1
(B) 2
(C) 3
(D) 1/2
Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?
At what point of the curve y = x2 does the tangent make an angle of 45° with the x-axis?
Find the point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slop is \[- \frac{1}{6}\] ?
Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?
Who that the tangents to the curve y = 7x3 + 11 at the points x = 2 and x = −2 are parallel ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { at } \left( x_1 , y_1 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = at2, y = 2at at t = 1 ?
Find the equation of the normal to the curve x2 + 2y2 − 4x − 6y + 8 = 0 at the point whose abscissa is 2 ?
Determine the equation(s) of tangent (s) line to the curve y = 4x3 − 3x + 5 which are perpendicular to the line 9y + x + 3 = 0 ?
Find the equation of the tangents to the curve 3x2 – y2 = 8, which passes through the point (4/3, 0) ?
Find the angle of intersection of the following curve y2 = x and x2 = y ?
Find the angle of intersection of the following curve y = 4 − x2 and y = x2 ?
Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?
Write the equation of the normal to the curve y = x + sin x cos x at \[x = \frac{\pi}{2}\] ?
The equation to the normal to the curve y = sin x at (0, 0) is ___________ .
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .
The slope of the tangent to the curve x = t2 + 3 t − 8, y = 2t2 − 2t − 5 at point (2, −1) is ________________ .
If the curve ay + x2 = 7 and x3 = y cut orthogonally at (1, 1), then a is equal to _____________ .
The curves y = aex and y = be−x cut orthogonally, if ___________ .
Find the equation of tangent to the curve y = x2 +4x + 1 at (-1 , -2).
The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is ______.
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.
Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are parallel to the line x + 3y = 4.
The curve y = `x^(1/5)` has at (0, 0) ______.
The equation of tangent to the curve y(1 + x2) = 2 – x, where it crosses x-axis is ______.
The point on the curves y = (x – 3)2 where the tangent is parallel to the chord joining (3, 0) and (4, 1) is ____________.
Find a point on the curve y = (x – 2)2. at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
Tangent is drawn to the ellipse `x^2/27 + y^2 = 1` at the point `(3sqrt(3) cos theta, sin theta), 0 < 0 < 1`. The sum of the intercepts on the axes made by the tangent is minimum if 0 is equal to
The normal at the point (1, 1) on the curve `2y + x^2` = 3 is
The curve `(x/a)^n + (y/b)^n` = 2, touches the line `x/a + y/b` = 2 at the point (a, b) for n is equal to ______.
The normals to the curve x = a(θ + sinθ), y = a(1 – cosθ) at the points θ = (2n + 1)π, n∈I are all ______.
For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.
Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3