Advertisements
Advertisements
Question
Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?
Solution
\[x = \theta + \sin\theta \text { and }y = 1 + \cos\theta\]
\[\frac{dx}{d\theta} = 1 + \cos\theta \text { and } \frac{dy}{d\theta} = - \sin\theta\]
\[ \therefore \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{- \sin\theta}{1 + \cos\theta}\]
\[\text { Slope of tangent,}m= \left( \frac{dy}{dx} \right)_{\theta = \frac{\pi}{2}} =\frac{- \sin\frac{\pi}{2}}{1 + \cos\frac{\pi}{2}}=\frac{- 1}{1 + 0}=-1\]
\[\text { Now,} \left( x_1 , y_1 \right) = \left( \frac{\pi}{2} + \sin\frac{\pi}{2}, 1 + \cos\frac{\pi}{2} \right) = \left( \frac{\pi}{2} + 1, 1 \right)\]
\[\text { Equation of tangent is },\]
\[y - y_1 = m \left( x - x_1 \right)\]
\[ \Rightarrow y - 1 = - 1\left( x - \frac{\pi}{2} - 1 \right)\]
\[ \Rightarrow 2y - 2 = - 2x + \pi + 2\]
\[ \Rightarrow 2x + 2y - \pi - 4 = 0\]
\[\text { Equation of normal is },\]
\[y - y_1 = \frac{- 1}{m} \left( x - x_1 \right)\]
\[ \Rightarrow y - 1 = 1 \left( x - \frac{\pi}{2} - 1 \right)\]
\[ \Rightarrow 2y - 2 = 2x - \pi - 2\]
\[ \Rightarrow 2x - 2y = \pi\]
APPEARS IN
RELATED QUESTIONS
Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.
Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x3 at (1, 1)
Show that the tangents to the curve y = 7x3 + 11 at the points where x = 2 and x = −2 are parallel.
Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.
Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
(A) (1, 2)
(B) (2, 1)
(C) (1, −2)
(D) (−1, 2)
Show that the normal at any point θ to the curve x = a cosθ + a θ sinθ, y = a sinθ – aθ cosθ is at a constant distance from the origin.
Find the equations of the tangent and the normal, to the curve 16x2 + 9y2 = 145 at the point (x1, y1), where x1 = 2 and y1 > 0.
Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.
Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?
Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?
Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?
Find the points on the curve\[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the y-axis ?
Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is parallel to y-axis ?
Who that the tangents to the curve y = 7x3 + 11 at the points x = 2 and x = −2 are parallel ?
Find the equation of the tangent to the curve \[\sqrt{x} + \sqrt{y} = a\] at the point \[\left( \frac{a^2}{4}, \frac{a^2}{4} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 at (0, 0) ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3 ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( x_0 , y_0 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point x2 = 4y at (2, 1) ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4x at (1, 2) ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = asect, y = btant at t ?
Find the angle of intersection of the following curve x2 + 4y2 = 8 and x2 − 2y2 = 2 ?
Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?
Show that the following set of curve intersect orthogonally x3 − 3xy2 = −2 and 3x2y − y3 = 2 ?
Show that the curves 4x = y2 and 4xy = k cut at right angles, if k2 = 512 ?
Find the coordinates of the point on the curve y2 = 3 − 4x where tangent is parallel to the line 2x + y− 2 = 0 ?
Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?
At what point the slope of the tangent to the curve x2 + y2 − 2x − 3 = 0 is zero
The angle of intersection of the curves xy = a2 and x2 − y2 = 2a2 is ______________ .
If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .
The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .
Find the equation of tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π that are parallel to the line x + 2y = 0.
Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis
The equation of the normal to the curve y = sinx at (0, 0) is ______.
Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is