English

Find the Equation of the Tangent and the Normal to the Following Curve at the Indicated Points X = θ + Sinθ, Y = 1 + Cosθ at θ = π 2 ? - Mathematics

Advertisements
Advertisements

Question

Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?

Sum

Solution

\[x = \theta + \sin\theta \text { and }y = 1 + \cos\theta\]

\[\frac{dx}{d\theta} = 1 + \cos\theta \text { and } \frac{dy}{d\theta} = - \sin\theta\]

\[ \therefore \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{- \sin\theta}{1 + \cos\theta}\]

\[\text { Slope of tangent,}m= \left( \frac{dy}{dx} \right)_{\theta = \frac{\pi}{2}} =\frac{- \sin\frac{\pi}{2}}{1 + \cos\frac{\pi}{2}}=\frac{- 1}{1 + 0}=-1\]

\[\text { Now,} \left( x_1 , y_1 \right) = \left( \frac{\pi}{2} + \sin\frac{\pi}{2}, 1 + \cos\frac{\pi}{2} \right) = \left( \frac{\pi}{2} + 1, 1 \right)\]

\[\text { Equation of tangent is },\]

\[y - y_1 = m \left( x - x_1 \right)\]

\[ \Rightarrow y - 1 = - 1\left( x - \frac{\pi}{2} - 1 \right)\]

\[ \Rightarrow 2y - 2 = - 2x + \pi + 2\]

\[ \Rightarrow 2x + 2y - \pi - 4 = 0\]

\[\text { Equation of normal is },\]

\[y - y_1 = \frac{- 1}{m} \left( x - x_1 \right)\]

\[ \Rightarrow y - 1 = 1 \left( x - \frac{\pi}{2} - 1 \right)\]

\[ \Rightarrow 2y - 2 = 2x - \pi - 2\]

\[ \Rightarrow 2x - 2y = \pi\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Tangents and Normals - Exercise 16.2 [Page 28]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 16 Tangents and Normals
Exercise 16.2 | Q 5.1 | Page 28

RELATED QUESTIONS

Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x3 at (1, 1)


Show that the tangents to the curve y = 7x3 + 11 at the points where x = 2 and x = −2 are parallel.


Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.


Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`


The line y = x + 1 is a tangent to the curve y2 = 4x at the point

(A) (1, 2)

(B) (2, 1)

(C) (1, −2)

(D) (−1, 2)


Show that the normal at any point θ to the curve x = a cosθ + a θ sinθ, y = a sinθ – aθ cosθ is at a constant distance from the origin.


Find the equations of the tangent and the normal, to the curve 16x2 + 9y2 = 145 at the point (x1, y1), where x1 = 2 and y1 > 0.


Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?


Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?


Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?


Find the points on the curve\[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is  parallel to the y-axis ?


Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is  parallel to y-axis ?


Who that the tangents to the curve y = 7x3 + 11 at the points x = 2 and x = −2 are parallel ?


Find the equation of the tangent to the curve \[\sqrt{x} + \sqrt{y} = a\] at the point \[\left( \frac{a^2}{4}, \frac{a^2}{4} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y = x2 at (0, 0) ?


Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3  ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( x_0 , y_0 \right)\] ?


 Find the equation of the tangent and the normal to the following curve at the indicated point  x2 = 4y at (2, 1) ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y2 = 4x at (1, 2)  ?


Find the equation of the tangent and the normal to the following curve at the indicated points  x = asect, y = btant at t ?


Find the angle of intersection of the following curve  x2 + 4y2 = 8 and x2 − 2y2 = 2 ?


Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?


Show that the following set of curve intersect orthogonally x3 − 3xy2 = −2 and 3x2y − y3 = 2 ?


Show that the curves 4x = y2 and 4xy = k cut at right angles, if k2 = 512 ?


Find the coordinates of the point on the curve y2 = 3 − 4x where tangent is parallel to the line 2x + y− 2 = 0 ?


Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?


At what point the slope of the tangent to the curve x2 + y2 − 2x − 3 = 0 is zero


The angle of intersection of the curves xy = a2 and x2 − y2 = 2a2 is ______________ .


If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .


The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .


Find the equation of tangents to the curve y = cos(+ y), –2π ≤ x ≤ 2π that are parallel to the line + 2y = 0.


Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis


The equation of the normal to the curve y = sinx at (0, 0) is ______.


Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y


The line y = x + 1 is a tangent to the curve y2 = 4x at the point


The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×