English

Show that the Curves 4x = Y2 and 4xy = K Cut at Right Angles, If K2 = 512 ? - Mathematics

Advertisements
Advertisements

Question

Show that the curves 4x = y2 and 4xy = k cut at right angles, if k2 = 512 ?

Solution

\[\text { Given }: \]

\[4x = y^2 . . . \left( 1 \right)\]

\[4xy = k . . . \left( 2 \right)\]

\[\text { From (1) and (2), we get }\]

\[ y^3 = k\]

\[ \Rightarrow y = k^\frac{1}{3} \]

\[\text { From (1), we get }\]

\[4x = k^\frac{2}{3} \]

\[ \Rightarrow x = \frac{k^\frac{2}{3}}{4}\]

\[\text { On differentiating (1) w.r.t.x, we get }\]

\[4 = 2y\frac{dy}{dx}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{2}{y}\]

\[ \Rightarrow m_1 = \left( \frac{dy}{dx} \right)_\left( \frac{k^\frac{2}{3}}{4}, k^\frac{1}{3} \right) = \frac{2}{k^\frac{1}{3}} = 2 k^\frac{- 1}{3} \]

\[\text { On differentiating (2) w.r.t.x, we get }\]

\[4x\frac{dy}{dx} + 4y = 0\]

\[ \Rightarrow \frac{dy}{dx} = \frac{- y}{x}\]

\[ \Rightarrow m_2 = \left( \frac{dy}{dx} \right)_\left( \frac{k^\frac{2}{3}}{4}, k^\frac{1}{3} \right) = \frac{- k^\frac{1}{3}}{\left( \frac{k^\frac{2}{3}}{4} \right)} = - 4 k^\frac{- 1}{3} \]

\[\text { It is given that the curves intersect at right angles }.\]

\[ \therefore m_1 \times m_2 = - 1\]

\[ \Rightarrow 2 k^\frac{- 1}{3} \times - 4 k^\frac{- 1}{3} = - 1\]

\[ \Rightarrow 8 k^\frac{- 2}{3} = 1\]

\[ \Rightarrow k^\frac{- 2}{3} = \frac{1}{8}\]

\[ \Rightarrow k^\frac{2}{3} = 8\]

\[\text { Cubing on both sides, we get }\]

\[ k^2 = 512\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Tangents and Normals - Exercise 16.3 [Page 40]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 16 Tangents and Normals
Exercise 16.3 | Q 4 | Page 40

RELATED QUESTIONS

Find the equations of the tangent and normal to the curve x = a sin3θ and y = a cos3θ at θ=π/4.


Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t


Find the equation of the normal at the point (am2am3) for the curve ay2 = x3.


Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x} \text { at }x = 9\] ?


Find the slope of the tangent and the normal to the following curve at the indicted point  y = x3 − x at x = 2 ?


At what point of the curve y = x2 does the tangent make an angle of 45° with the x-axis?


Find the points on the curve x2 + y2 = 13, the tangent at each one of which is parallel to the line 2x + 3y = 7 ?


Find the points on the curve y = x3 where the slope of the tangent is equal to the x-coordinate of the point ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y = x2 at (0, 0) ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { at } \left( x_1 , y_1 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y2 = 4x at (1, 2)  ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points:

x = 3cosθ − cos3θ, y = 3sinθ − sin3θ? 


The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?


Find the angle of intersection of the following curve y = 4 − x2 and y = x2 ?


Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { and } xy = c^2\] ?


Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?


Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?


Write the angle between the curves y2 = 4x and x2 = 2y − 3 at the point (1, 2) ?


Write the angle between the curves y = e−x and y = ex at their point of intersections ?


The equation of the normal to the curve y = x(2 − x) at the point (2, 0) is ________________ .


At what point the slope of the tangent to the curve x2 + y2 − 2x − 3 = 0 is zero


The curves y = aex and y = be−x cut orthogonally, if ___________ .


The equation of the normal to the curve x = a cos3 θ, y = a sin3 θ at the point θ = π/4 is __________ .


If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .


The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .


Show that the equation of normal at any point on the curve x = 3cos θ – cos3θ, y = 3sinθ – sin3θ is 4 (y cos3θ – x sin3θ) = 3 sin 4θ


Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are parallel to the line x + 3y = 4.


Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y


The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.


The equation of tangent to the curve y(1 + x2) = 2 – x, where it crosses x-axis is ______.


The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.


The equation of normal to the curve y = tanx at (0, 0) is ______.


The tangent to the parabola x2 = 2y at the point (1, `1/2`) makes with the x-axis an angle of ____________.


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0.


Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point


If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points `(3cosθ, sqrt(3) sinθ)` and `(-3sinθ, sqrt(3) cos θ); θ ∈(0, π/2)`; then `(2 cot β)/(sin 2θ)` is equal to ______.


Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×