Advertisements
Advertisements
Question
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4x at (1, 2) ?
Solution
\[y^2 = 4x\]
\[\text { Differentiating both sides w.r.t.x,} \]
\[2y \frac{dy}{dx} = 4\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2}{y}\]
\[\text { Slope of tangent,}m= \left( \frac{dy}{dx} \right)_\left( 1, 2 \right) =\frac{2}{2}=1\]
\[\text { Given } \left( x_1 , y_1 \right) = \left( 1, 2 \right)\]
\[\text{ Equation of tangent is },\]
\[y - y_1 = m \left( x - x_1 \right)\]
\[ \Rightarrow y - 2 = 1\left( x - 1 \right)\]
\[ \Rightarrow y - 2 = x - 1\]
\[ \Rightarrow x - y + 1 = 0\]
\[\text { Equation of normal is},\]
\[y - y_1 = \frac{- 1}{m} \left( x - x_1 \right)\]
\[ \Rightarrow y - 2 = - 1\left( x - 1 \right)\]
\[ \Rightarrow y - 2 = - x + 1\]
\[ \Rightarrow x + y - 3 = 0\]
APPEARS IN
RELATED QUESTIONS
Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)
Show that the tangents to the curve y = 7x3 + 11 at the points where x = 2 and x = −2 are parallel.
Find the points on the curve y = x3 at which the slope of the tangent is equal to the y-coordinate of the point.
Show that the normal at any point θ to the curve x = a cosθ + a θ sinθ, y = a sinθ – aθ cosθ is at a constant distance from the origin.
Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x} \text { at }x = 9\] ?
Find the slope of the tangent and the normal to the following curve at the indicted point x2 + 3y + y2 = 5 at (1, 1) ?
At what points on the curve y = 2x2 − x + 1 is the tangent parallel to the line y = 3x + 4?
Find the points on the curve 2a2y = x3 − 3ax2 where the tangent is parallel to x-axis ?
Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 at (0, 0) ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[y^2 = \frac{x^3}{4 - x}at \left( 2, - 2 \right)\] ?
Find the equation of the tangent to the curve \[y = \sqrt{3x - 2}\] which is parallel to the 4x − 2y + 5 = 0 ?
At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?
Find the angle of intersection of the following curve x2 + y2 − 4x − 1 = 0 and x2 + y2 − 2y − 9 = 0 ?
Show that the curves 4x = y2 and 4xy = k cut at right angles, if k2 = 512 ?
Find the point on the curve y = x2 − 2x + 3, where the tangent is parallel to x-axis ?
Find the slope of the normal at the point 't' on the curve \[x = \frac{1}{t}, y = t\] ?
Write the coordinates of the point on the curve y2 = x where the tangent line makes an angle \[\frac{\pi}{4}\] with x-axis ?
Write the coordinates of the point at which the tangent to the curve y = 2x2 − x + 1 is parallel to the line y = 3x + 9 ?
Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?
The equation of the normal to the curve y = x + sin x cos x at x = `π/2` is ___________ .
If the curve ay + x2 = 7 and x3 = y cut orthogonally at (1, 1), then a is equal to _____________ .
The slope of the tangent to the curve x = 3t2 + 1, y = t3 −1 at x = 1 is ___________ .
Find the equation of tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π that are parallel to the line x + 2y = 0.
Find the equation of tangent to the curve y = x2 +4x + 1 at (-1 , -2).
Find the angle of intersection of the curves y2 = x and x2 = y.
Show that the equation of normal at any point on the curve x = 3cos θ – cos3θ, y = 3sinθ – sin3θ is 4 (y cos3θ – x sin3θ) = 3 sin 4θ
Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.
The curve y = `x^(1/5)` has at (0, 0) ______.
The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.
The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:
`"sin"^"p" theta "cos"^"q" theta` attains a maximum, when `theta` = ____________.
The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0
The tangent to the curve y = x2 + 3x will pass through the point (0, -9) if it is drawn at the point ____________.
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is
If the tangent to the conic, y – 6 = x2 at (2, 10) touches the circle, x2 + y2 + 8x – 2y = k (for some fixed k) at a point (α, β); then (α, β) is ______.