English

Find the Angle of Intersection of the Following Curve X2 + Y2 − 4x − 1 = 0 and X2 + Y2 − 2y − 9 = 0 ? - Mathematics

Advertisements
Advertisements

Question

Find the angle of intersection of the following curve x2 + y2 − 4x − 1 = 0 and x2 + y2 − 2y − 9 = 0 ?

Solution

\[\text{ Given curves are },\]

\[ x^2 + y^2 - 4x - 1 = 0 . . . \left( 1 \right)\]

\[ x^2 + y^2 - 2y - 9 = 0 . . . \left( 2 \right)\]

\[\text { From } (3)\text {  we get }\]

\[ x^2 + y^2 = 4x + 1\]

\[\text { Substituting this in} (2),\]

\[4x + 1 - 2y - 9 = 0\]

\[ \Rightarrow 4x - 2y = 8\]

\[ \Rightarrow 2x - y = 4\]

\[ \Rightarrow y = 2x - 4 . . . \left( 3 \right)\]

\[\text { Substituting this in } (1),\]

\[ x^2 + \left( 2x - 4 \right)^2 - 4x - 1 = 0\]

\[ \Rightarrow x^2 + 4 x^2 + 16 - 16x - 4x - 1 = 0\]

\[ \Rightarrow 5 x^2 - 20x + 15 = 0\]

\[ \Rightarrow x^2 - 4x + 3 = 0\]

\[ \Rightarrow \left( x - 3 \right)\left( x - 1 \right) = 0\]

\[ \Rightarrow x = 3 orx = 1\]

\[\text { Substituting the values of } x in \left( 3 \right), \text { we get,} \]

\[y = 2 or  y = - 2 \]

\[ \therefore \left( x, y \right)=\left( 3, 2 \right),\left( 1, - 2 \right)\]

\[\text { Differentiating (1) w.r.t.x },\]

\[2x + 2y \frac{dy}{dx} - 4 = 0\]

\[ \Rightarrow \frac{dy}{dx} = \frac{4 - 2x}{2y} = \frac{2 - x}{y} . . . \left( 4 \right)\]

\[\text { Differenntiating (2) w.r.t.x },\]

\[2x + 2y \frac{dy}{dx} - 2\frac{dy}{dx} = 0\]

\[ \Rightarrow \frac{dy}{dx}\left( 2y - 2 \right) = - 2x\]

\[ \Rightarrow \frac{dy}{dx} = \frac{2x}{2 - 2y} = \frac{x}{1 - y} . . . \left( 5 \right)\]

\[\text { Case }- 1:\left( x, y \right)=\left( 3, 2 \right)\]

\[\text { From } \left( 4 \right), \text { we get }, m_1 = \frac{2 - 3}{2} = \frac{- 1}{2}\]

\[\text { From } \left( 5 \right), \text { we get }, m_2 = \frac{3}{1 - 2} = - 3\]

\[\text { Now }, \]

\[\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{\frac{- 1}{2} + 3}{1 + \frac{3}{2}} \right| = 1\]

\[ \Rightarrow \theta = \tan^{- 1} \left( 1 \right) = \frac{\pi}{4}\]

\[\text { Case-}2: \left( x, y \right)=\left( 1, - 2 \right)\]

\[\text { From } \left( 4 \right), \text { we get,} m_1 = \frac{2 - 1}{- 2} = \frac{- 1}{2}\]

\[\text { From } \left( 5 \right), \text { we get }, m_2 = \frac{1}{1 + 2} = \frac{1}{3}\]

\[\text { Now,} \]

\[\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{\frac{- 1}{2} - \frac{1}{3}}{1 - \frac{1}{6}} \right| = 1\]

\[ \Rightarrow \theta = \tan^{- 1} \left( 1 \right) = \frac{\pi}{4}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Tangents and Normals - Exercise 16.3 [Page 40]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 16 Tangents and Normals
Exercise 16.3 | Q 1.4 | Page 40

RELATED QUESTIONS

Find the equation of tangents to the curve y= x3 + 2x – 4, which are perpendicular to line x + 14y + 3 = 0.


Find the equations of the tangent and normal to the curve `x^2/a^2−y^2/b^2=1` at the point `(sqrt2a,b)` .


Find the slope of the tangent to the curve y = x3 − 3x + 2 at the point whose x-coordinate is 3.


Find a point on the curve y = (x − 2)2 at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).


Find the point on the curve y = x3 − 11x + 5 at which the tangent is y = x − 11.

 

Find the equations of the tangent and normal to the given curves at the indicated points:

x = cos ty = sin t at  t = `pi/4`


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is perpendicular to the line 5y − 15x = 13.


Show that the tangents to the curve y = 7x3 + 11 at the points where x = 2 and x = −2 are parallel.


Find the equation of the normals to the curve y = x3 + 2+ 6 which are parallel to the line x + 14y + 4 = 0.


Find the equation of the tangent to the curve `y = sqrt(3x-2)`  which is parallel to the line 4x − 2y + 5 = 0.

 

The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2,– 1) is

(A) `22/7`

(B) `6/7`

(C) `7/6`

(D) `(-6)/7`


Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?


Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?


Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3  ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?


 Find the equation of the tangent and the normal to the following curve at the indicated point  x2 = 4y at (2, 1) ?


Find an equation of normal line to the curve y = x3 + 2x + 6 which is parallel to the line x+ 14y + 4 = 0 ?


Determine the equation(s) of tangent (s) line to the curve y = 4x3 − 3x + 5 which are perpendicular to the line 9y + x + 3 = 0 ?


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which perpendicular to the line 5y − 15x = 13. ?


Find the equation of the tangent to the curve x2 + 3y − 3 = 0, which is parallel to the line y= 4x − 5 ?


Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?


At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?


If the straight line xcos \[\alpha\] +y sin \[\alpha\] = p touches the curve  \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\] then prove that a2cos2 \[\alpha\] \[-\] b2sin\[\alpha\] = p?


If the tangent line at a point (x, y) on the curve y = f(x) is parallel to x-axis, then write the value of \[\frac{dy}{dx}\] ?


Write the angle made by the tangent to the curve x = et cos t, y = et sin t at \[t = \frac{\pi}{4}\] with the x-axis ?


The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .


The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .


The slope of the tangent to the curve x = t2 + 3 t − 8, y = 2t2 − 2t − 5 at point (2, −1) is ________________ .


The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .


Find the equation of tangents to the curve y = cos(+ y), –2π ≤ x ≤ 2π that are parallel to the line + 2y = 0.


Find the angle of intersection of the curves y2 = x and x2 = y.


If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.


The curve y = `x^(1/5)` has at (0, 0) ______.


The tangent to the curve y = 2x2 - x + 1 is parallel to the line y = 3x + 9 at the point ____________.


The line y = x + 1 is a tangent to the curve y2 = 4x at the point


Which of the following represent the slope of normal?


If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.


For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×