Advertisements
Advertisements
Question
Find the angle of intersection of the following curve x2 + y2 − 4x − 1 = 0 and x2 + y2 − 2y − 9 = 0 ?
Solution
\[\text{ Given curves are },\]
\[ x^2 + y^2 - 4x - 1 = 0 . . . \left( 1 \right)\]
\[ x^2 + y^2 - 2y - 9 = 0 . . . \left( 2 \right)\]
\[\text { From } (3)\text { we get }\]
\[ x^2 + y^2 = 4x + 1\]
\[\text { Substituting this in} (2),\]
\[4x + 1 - 2y - 9 = 0\]
\[ \Rightarrow 4x - 2y = 8\]
\[ \Rightarrow 2x - y = 4\]
\[ \Rightarrow y = 2x - 4 . . . \left( 3 \right)\]
\[\text { Substituting this in } (1),\]
\[ x^2 + \left( 2x - 4 \right)^2 - 4x - 1 = 0\]
\[ \Rightarrow x^2 + 4 x^2 + 16 - 16x - 4x - 1 = 0\]
\[ \Rightarrow 5 x^2 - 20x + 15 = 0\]
\[ \Rightarrow x^2 - 4x + 3 = 0\]
\[ \Rightarrow \left( x - 3 \right)\left( x - 1 \right) = 0\]
\[ \Rightarrow x = 3 orx = 1\]
\[\text { Substituting the values of } x in \left( 3 \right), \text { we get,} \]
\[y = 2 or y = - 2 \]
\[ \therefore \left( x, y \right)=\left( 3, 2 \right),\left( 1, - 2 \right)\]
\[\text { Differentiating (1) w.r.t.x },\]
\[2x + 2y \frac{dy}{dx} - 4 = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{4 - 2x}{2y} = \frac{2 - x}{y} . . . \left( 4 \right)\]
\[\text { Differenntiating (2) w.r.t.x },\]
\[2x + 2y \frac{dy}{dx} - 2\frac{dy}{dx} = 0\]
\[ \Rightarrow \frac{dy}{dx}\left( 2y - 2 \right) = - 2x\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2x}{2 - 2y} = \frac{x}{1 - y} . . . \left( 5 \right)\]
\[\text { Case }- 1:\left( x, y \right)=\left( 3, 2 \right)\]
\[\text { From } \left( 4 \right), \text { we get }, m_1 = \frac{2 - 3}{2} = \frac{- 1}{2}\]
\[\text { From } \left( 5 \right), \text { we get }, m_2 = \frac{3}{1 - 2} = - 3\]
\[\text { Now }, \]
\[\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{\frac{- 1}{2} + 3}{1 + \frac{3}{2}} \right| = 1\]
\[ \Rightarrow \theta = \tan^{- 1} \left( 1 \right) = \frac{\pi}{4}\]
\[\text { Case-}2: \left( x, y \right)=\left( 1, - 2 \right)\]
\[\text { From } \left( 4 \right), \text { we get,} m_1 = \frac{2 - 1}{- 2} = \frac{- 1}{2}\]
\[\text { From } \left( 5 \right), \text { we get }, m_2 = \frac{1}{1 + 2} = \frac{1}{3}\]
\[\text { Now,} \]
\[\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{\frac{- 1}{2} - \frac{1}{3}}{1 - \frac{1}{6}} \right| = 1\]
\[ \Rightarrow \theta = \tan^{- 1} \left( 1 \right) = \frac{\pi}{4}\]
APPEARS IN
RELATED QUESTIONS
Find the equation of tangents to the curve y= x3 + 2x – 4, which are perpendicular to line x + 14y + 3 = 0.
Find the equations of the tangent and normal to the curve `x^2/a^2−y^2/b^2=1` at the point `(sqrt2a,b)` .
Find the slope of the tangent to the curve y = x3 − 3x + 2 at the point whose x-coordinate is 3.
Find a point on the curve y = (x − 2)2 at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).
Find the point on the curve y = x3 − 11x + 5 at which the tangent is y = x − 11.
Find the equations of the tangent and normal to the given curves at the indicated points:
x = cos t, y = sin t at t = `pi/4`
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is perpendicular to the line 5y − 15x = 13.
Show that the tangents to the curve y = 7x3 + 11 at the points where x = 2 and x = −2 are parallel.
Find the equation of the normals to the curve y = x3 + 2x + 6 which are parallel to the line x + 14y + 4 = 0.
Find the equation of the tangent to the curve `y = sqrt(3x-2)` which is parallel to the line 4x − 2y + 5 = 0.
The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2,– 1) is
(A) `22/7`
(B) `6/7`
(C) `7/6`
(D) `(-6)/7`
Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?
Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3 ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point x2 = 4y at (2, 1) ?
Find an equation of normal line to the curve y = x3 + 2x + 6 which is parallel to the line x+ 14y + 4 = 0 ?
Determine the equation(s) of tangent (s) line to the curve y = 4x3 − 3x + 5 which are perpendicular to the line 9y + x + 3 = 0 ?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which perpendicular to the line 5y − 15x = 13. ?
Find the equation of the tangent to the curve x2 + 3y − 3 = 0, which is parallel to the line y= 4x − 5 ?
Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?
At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?
If the straight line xcos \[\alpha\] +y sin \[\alpha\] = p touches the curve \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\] then prove that a2cos2 \[\alpha\] \[-\] b2sin2 \[\alpha\] = p2 ?
If the tangent line at a point (x, y) on the curve y = f(x) is parallel to x-axis, then write the value of \[\frac{dy}{dx}\] ?
Write the angle made by the tangent to the curve x = et cos t, y = et sin t at \[t = \frac{\pi}{4}\] with the x-axis ?
The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .
The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .
The slope of the tangent to the curve x = t2 + 3 t − 8, y = 2t2 − 2t − 5 at point (2, −1) is ________________ .
The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .
Find the equation of tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π that are parallel to the line x + 2y = 0.
Find the angle of intersection of the curves y2 = x and x2 = y.
If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.
The curve y = `x^(1/5)` has at (0, 0) ______.
The tangent to the curve y = 2x2 - x + 1 is parallel to the line y = 3x + 9 at the point ____________.
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
Which of the following represent the slope of normal?
If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.
For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.