Advertisements
Advertisements
Question
Determine the equation(s) of tangent (s) line to the curve y = 4x3 − 3x + 5 which are perpendicular to the line 9y + x + 3 = 0 ?
Solution
Let (x1, y1) be a point on the curve where we need to find the tangent(s).
Slope of the given line = \[\frac{- 1}{9}\]
Since, tangent is perpendicular to the given line,
Slope of the tangent = \[\frac{- 1}{\left( \frac{- 1}{9} \right)} = 9\]
\[\text { Let }\left( x_1 , y_1 \right)\text { be the point where the tangent is drawn to this curve }.\]
\[\text { Since, the point lies on the curve } . \]
\[\text { Hence }, y_1 = 4 {x_1}^3 - 3 x_1 + 5 \]
\[\text { Now }, y = 4 x^3 - 3x + 5\]
\[ \Rightarrow \frac{dy}{dx} = 12 x^2 - 3\]
\[\text { Slope of the tangent }= \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =12 {x_1}^2 - 3\]
\[\text { Given that },\]
\[\text { slope of the tangent = slope of the perpendicular line }\]
\[ \Rightarrow 12 {x_1}^2 - 3 = 9\]
\[ \Rightarrow 12 {x_1}^2 = 12\]
\[ \Rightarrow {x_1}^2 = 1\]
\[ \Rightarrow x_1 = \pm 1\]
\[\text { Case}-1: x_1 = 1\]
\[ y_1 = 4 {x_1}^3 - 3 x_1 + 5 = 4 - 3 + 5 = 6\]
\[ \therefore \left( x_1 , y_1 \right) = \left( 1, 6 \right)\]
\[\text { Slope of the tangent}=9\]
\[\text { Equation of tangent is},\]
\[y - y_1 = m \left( x - x_1 \right)\]
\[ \Rightarrow y - 6 = 9\left( x - 1 \right)\]
\[ \Rightarrow y - 6 = 9x - 9\]
\[ \Rightarrow 9x - y - 3 = 0\]
\[\text { Case }-2: x_1 = - 1\]
\[ y_1 = 4 {x_1}^3 - 3 x_1 + 5 = - 4 + 3 + 5 = 4\]
\[ \therefore \left( x_1 , y_1 \right) = \left( - 1, 4 \right)\]
\[\text { Slope of the tangent }=9\]
\[\text { Equation of tangent is },\]
\[y - y_1 = m \left( x - x_1 \right)\]
\[ \Rightarrow y - 4 = 9\left( x + 1 \right)\]
\[ \Rightarrow y - 4 = 9x + 9\]
\[ \Rightarrow 9x - y + 13 = 0\]
APPEARS IN
RELATED QUESTIONS
The equation of tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x – 5. Find the values of a and b.
Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t
Find the equations of the tangent and normal to the curve `x^2/a^2−y^2/b^2=1` at the point `(sqrt2a,b)` .
Find the point on the curve y = x3 − 11x + 5 at which the tangent is y = x − 11.
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x2 at (0, 0)
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is perpendicular to the line 5y − 15x = 13.
Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`
The slope of the normal to the curve y = 2x2 + 3 sin x at x = 0 is
(A) 3
(B) 1/3
(C) −3
(D) `-1/3`
Find the equation of the normal to y = 2x3 − x2 + 3 at (1, 4) ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3 ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?
Find the equation of the tangent line to the curve y = x2 + 4x − 16 which is parallel to the line 3x − y + 1 = 0 ?
Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?
Find the angle of intersection of the following curve x2 = 27y and y2 = 8x ?
Show that the following curve intersect orthogonally at the indicated point y2 = 8x and 2x2 + y2 = 10 at \[\left( 1, 2\sqrt{2} \right)\] ?
Find the point on the curve y = x2 − 2x + 3, where the tangent is parallel to x-axis ?
Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?
Write the equation on the tangent to the curve y = x2 − x + 2 at the point where it crosses the y-axis ?
Write the equation of the normal to the curve y = cos x at (0, 1) ?
The slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at the point (2, −1) is _____________ .
Find the equation of tangent to the curve y = x2 +4x + 1 at (-1 , -2).
If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is ______.
The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.
The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 – 2 = 0 intersect at an angle of ______.
At (0, 0) the curve y = x3 + x
The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:
For which value of m is the line y = mx + 1 a tangent to the curve y2 = 4x?
The point on the curves y = (x – 3)2 where the tangent is parallel to the chord joining (3, 0) and (4, 1) is ____________.
The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0
Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis.
The line is y = x + 1 is a tangent to the curve y2 = 4x at the point.
The slope of the tangentto the curve `x= t^2 + 3t - 8, y = 2t^2 - 2t - 5` at the point `(2, -1)` is
If the tangent to the curve y = x + siny at a point (a, b) is parallel to the line joining `(0, 3/2)` and `(1/2, 2)`, then ______.
If the tangent to the conic, y – 6 = x2 at (2, 10) touches the circle, x2 + y2 + 8x – 2y = k (for some fixed k) at a point (α, β); then (α, β) is ______.