हिंदी

Find the Angle of Intersection of the Following Curve X2 + Y2 − 4x − 1 = 0 and X2 + Y2 − 2y − 9 = 0 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the angle of intersection of the following curve x2 + y2 − 4x − 1 = 0 and x2 + y2 − 2y − 9 = 0 ?

उत्तर

\[\text{ Given curves are },\]

\[ x^2 + y^2 - 4x - 1 = 0 . . . \left( 1 \right)\]

\[ x^2 + y^2 - 2y - 9 = 0 . . . \left( 2 \right)\]

\[\text { From } (3)\text {  we get }\]

\[ x^2 + y^2 = 4x + 1\]

\[\text { Substituting this in} (2),\]

\[4x + 1 - 2y - 9 = 0\]

\[ \Rightarrow 4x - 2y = 8\]

\[ \Rightarrow 2x - y = 4\]

\[ \Rightarrow y = 2x - 4 . . . \left( 3 \right)\]

\[\text { Substituting this in } (1),\]

\[ x^2 + \left( 2x - 4 \right)^2 - 4x - 1 = 0\]

\[ \Rightarrow x^2 + 4 x^2 + 16 - 16x - 4x - 1 = 0\]

\[ \Rightarrow 5 x^2 - 20x + 15 = 0\]

\[ \Rightarrow x^2 - 4x + 3 = 0\]

\[ \Rightarrow \left( x - 3 \right)\left( x - 1 \right) = 0\]

\[ \Rightarrow x = 3 orx = 1\]

\[\text { Substituting the values of } x in \left( 3 \right), \text { we get,} \]

\[y = 2 or  y = - 2 \]

\[ \therefore \left( x, y \right)=\left( 3, 2 \right),\left( 1, - 2 \right)\]

\[\text { Differentiating (1) w.r.t.x },\]

\[2x + 2y \frac{dy}{dx} - 4 = 0\]

\[ \Rightarrow \frac{dy}{dx} = \frac{4 - 2x}{2y} = \frac{2 - x}{y} . . . \left( 4 \right)\]

\[\text { Differenntiating (2) w.r.t.x },\]

\[2x + 2y \frac{dy}{dx} - 2\frac{dy}{dx} = 0\]

\[ \Rightarrow \frac{dy}{dx}\left( 2y - 2 \right) = - 2x\]

\[ \Rightarrow \frac{dy}{dx} = \frac{2x}{2 - 2y} = \frac{x}{1 - y} . . . \left( 5 \right)\]

\[\text { Case }- 1:\left( x, y \right)=\left( 3, 2 \right)\]

\[\text { From } \left( 4 \right), \text { we get }, m_1 = \frac{2 - 3}{2} = \frac{- 1}{2}\]

\[\text { From } \left( 5 \right), \text { we get }, m_2 = \frac{3}{1 - 2} = - 3\]

\[\text { Now }, \]

\[\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{\frac{- 1}{2} + 3}{1 + \frac{3}{2}} \right| = 1\]

\[ \Rightarrow \theta = \tan^{- 1} \left( 1 \right) = \frac{\pi}{4}\]

\[\text { Case-}2: \left( x, y \right)=\left( 1, - 2 \right)\]

\[\text { From } \left( 4 \right), \text { we get,} m_1 = \frac{2 - 1}{- 2} = \frac{- 1}{2}\]

\[\text { From } \left( 5 \right), \text { we get }, m_2 = \frac{1}{1 + 2} = \frac{1}{3}\]

\[\text { Now,} \]

\[\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{\frac{- 1}{2} - \frac{1}{3}}{1 - \frac{1}{6}} \right| = 1\]

\[ \Rightarrow \theta = \tan^{- 1} \left( 1 \right) = \frac{\pi}{4}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Tangents and Normals - Exercise 16.3 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 16 Tangents and Normals
Exercise 16.3 | Q 1.4 | पृष्ठ ४०

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the equation of tangents to the curve y= x3 + 2x – 4, which are perpendicular to line x + 14y + 3 = 0.


Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t


Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t


Find the point on the curve y = x3 − 11x + 5 at which the tangent is y = x − 11.

 

Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.


Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).


Find the equation of the tangent to the curve `y = sqrt(3x-2)`  which is parallel to the line 4x − 2y + 5 = 0.

 

The line y = mx + 1 is a tangent to the curve y2 = 4x if the value of m is

(A) 1

(B) 2

(C) 3

(D) 1/2


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?


Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?


If the tangent to the curve y = x3 + ax + b at (1, − 6) is parallel to the line x − y + 5 = 0, find a and b ?


Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?


At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?


At what points on the curve y = 2x2 − x + 1 is the tangent parallel to the line y = 3x + 4?


At what points on the curve y = x2 − 4x + 5 is the tangent perpendicular to the line 2y + x = 7?


Find the points on the curve y = x3 where the slope of the tangent is equal to the x-coordinate of the point ?


Find the equation of the tangent and the normal to the following curve at the indicated point  \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?


Find the equation of the normal to the curve ay2 = x3 at the point (am2, am3) ?


Find the equation of the tangent to the curve x2 + 3y − 3 = 0, which is parallel to the line y= 4x − 5 ?


Find the equation of the tangent to the curve x = sin 3ty = cos 2t at

\[t = \frac{\pi}{4}\] ?


At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?


Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?


Show that the curves \[\frac{x^2}{a^2 + \lambda_1} + \frac{y^2}{b^2 + \lambda_1} = 1 \text { and } \frac{x^2}{a^2 + \lambda_2} + \frac{y^2}{b^2 + \lambda_2} = 1\] intersect at right angles ?


Find the point on the curve y = x2 − 2x + 3, where the tangent is parallel to x-axis ?


Find the slope of the normal at the point 't' on the curve \[x = \frac{1}{t}, y = t\] ?


Write the angle between the curves y = e−x and y = ex at their point of intersections ?


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .


The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .


The normal to the curve x2 = 4y passing through (1, 2) is _____________ .


Find the angle of intersection of the curves \[y^2 = 4ax \text { and } x^2 = 4by\] .

 

Find the equation of tangents to the curve y = cos(+ y), –2π ≤ x ≤ 2π that are parallel to the line + 2y = 0.


Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.


Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0.


Tangent and normal are drawn at P(16, 16) on the parabola y2 = 16x, which intersect the axis of the parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and ∠CPB = θ, then a value of tan θ is:


An edge of variable cube is increasing at the rate of 3 cm/s. The volume of the cube increasing fast when the edge is 10 cm long is ______ cm3/s.


For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×