Advertisements
Advertisements
प्रश्न
At what points on the curve y = 2x2 − x + 1 is the tangent parallel to the line y = 3x + 4?
उत्तर
Let (x1, y1) be the required point.
The slope of line y = 3x + 4 is 3.
\[\text { Since, the point lies on the curve } . \]
\[\text { Hence, y }_1 = 2 {x_1}^2 - x_1 + 1\]
\[\text { Now, y } = 2 x^2 - x + 1\]
\[\frac{dy}{dx} = 4x - 1\]
\[\text { Now,} \]
\[\text { Slope of the tangent at }\left( x_1 , y_1 \right)= \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =4 x_1 -1\]
\[\text { Slope of the tangent at }\left( x_1 , y_1 \right)= \text { Slope of the given line [Given] }\]
\[ \therefore 4 x_1 - 1 = 3\]
\[ \Rightarrow 4 x_1 = 4\]
\[ \Rightarrow x_1 = 1\]
\[\text { and }\]
\[ y_1 = 2 {x_1}^2 - x_1 + 1 = 2 - 1 + 1 = 2\]
\[\text { Thus, the required point is }\left( 1, 2 \right).\]
APPEARS IN
संबंधित प्रश्न
Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is perpendicular to the line 5y − 15x = 13.
Find the points on the curve y = x3 at which the slope of the tangent is equal to the y-coordinate of the point.
Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.
Find the slope of the tangent and the normal to the following curve at the indicted point xy = 6 at (1, 6) ?
Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?
At what point of the curve y = x2 does the tangent make an angle of 45° with the x-axis?
Find the points on the curve x2 + y2 = 13, the tangent at each one of which is parallel to the line 2x + 3y = 7 ?
Find the points on the curve y = x3 where the slope of the tangent is equal to the x-coordinate of the point ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1?
Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { at } \left( x_1 , y_1 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at (x1, y1)?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = asect, y = btant at t ?
The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?
Find the equations of all lines of slope zero and that are tangent to the curve \[y = \frac{1}{x^2 - 2x + 3}\] ?
Find the angle of intersection of the following curve 2y2 = x3 and y2 = 32x ?
Find the angle of intersection of the following curve x2 = 27y and y2 = 8x ?
Show that the following set of curve intersect orthogonally x2 + 4y2 = 8 and x2 − 2y2 = 4 ?
Show that the following curve intersect orthogonally at the indicated point y2 = 8x and 2x2 + y2 = 10 at \[\left( 1, 2\sqrt{2} \right)\] ?
Show that the curves 4x = y2 and 4xy = k cut at right angles, if k2 = 512 ?
If the straight line xcos \[\alpha\] +y sin \[\alpha\] = p touches the curve \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\] then prove that a2cos2 \[\alpha\] \[-\] b2sin2 \[\alpha\] = p2 ?
If the tangent line at a point (x, y) on the curve y = f(x) is parallel to x-axis, then write the value of \[\frac{dy}{dx}\] ?
Write the angle between the curves y = e−x and y = ex at their point of intersections ?
Write the equation of the normal to the curve y = cos x at (0, 1) ?
The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .
If the curve ay + x2 = 7 and x3 = y cut orthogonally at (1, 1), then a is equal to _____________ .
The tangent to the curve given by x = et . cost, y = et . sint at t = `pi/4` makes with x-axis an angle ______.
`"sin"^"p" theta "cos"^"q" theta` attains a maximum, when `theta` = ____________.
The tangent to the curve y = 2x2 - x + 1 is parallel to the line y = 3x + 9 at the point ____________.
Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.
Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis.
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0.
The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is
If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.
The normals to the curve x = a(θ + sinθ), y = a(1 – cosθ) at the points θ = (2n + 1)π, n∈I are all ______.
The normal of the curve given by the equation x = a(sinθ + cosθ), y = a(sinθ – cosθ) at the point θ is ______.