हिंदी

The tangent to the curve given by x = et . cost, y = et . sint at t = π4 makes with x-axis an angle ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The tangent to the curve given by x = et . cost, y = et . sint at t = `pi/4` makes with x-axis an angle ______.

विकल्प

  • 0

  • `pi/4`

  • `pi/3`

  • `pi/2`

MCQ
रिक्त स्थान भरें

उत्तर

The tangent to the curve given by x = et . cost, y = et . sint at t = `pi/4` makes with x-axis an angle `pi/2`.

Explanation:

`"dx"/"dt"` = – et . sint + etcost

`"dy"/"dt" = etcost + etsint

Therefore, `("dy"/"dx")_("t" = pi/4) = (cos"t" + sin"t")/(cos"t" - sin"t") = sqrt(2)/0`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Application Of Derivatives - Solved Examples [पृष्ठ १३३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 6 Application Of Derivatives
Solved Examples | Q 21 | पृष्ठ १३३

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Prove that the curves x = y2 and xy = k cut at right angles if 8k2 = 1. [Hint: Two curves intersect at right angle if the tangents to the curves at the point of intersection are perpendicular to each other.]


Find the slope of the tangent and the normal to the following curve at the indicted point  y = x3 − x at x = 2 ?


If the tangent to the curve y = x3 + ax + b at (1, − 6) is parallel to the line x − y + 5 = 0, find a and b ?


Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?


At what point of the curve y = x2 does the tangent make an angle of 45° with the x-axis?


Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = a(θ + sinθ), y = a(1 − cosθ) at θ ?


Find the equation of the normal to the curve x2 + 2y2 − 4x − 6y + 8 = 0 at the point whose abscissa is 2 ?


The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?


Find the angle of intersection of the following curve  y = x2 and x2 + y2 = 20  ?


Show that the following curve intersect orthogonally at the indicated point y2 = 8x and 2x2 +  y2 = 10 at  \[\left( 1, 2\sqrt{2} \right)\] ?


If the tangent line at a point (x, y) on the curve y = f(x) is parallel to x-axis, then write the value of \[\frac{dy}{dx}\] ?


If the tangent line at a point (x, y) on the curve y = f(x) is parallel to y-axis, find the value of \[\frac{dx}{dy}\] ?


If the tangent to the curve x = a t2, y = 2 at is perpendicular to x-axis, then its point of contact is _____________ .


Find the angle of intersection of the curves \[y^2 = 4ax \text { and } x^2 = 4by\] .

 

Find the equation of tangent to the curve `y = sqrt(3x -2)` which is parallel to the line 4x − 2y + 5 = 0. Also, write the equation of normal to the curve at the point of contact.


Show that the equation of normal at any point on the curve x = 3cos θ – cos3θ, y = 3sinθ – sin3θ is 4 (y cos3θ – x sin3θ) = 3 sin 4θ


The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.


The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 – 2 = 0 intersect at an angle of ______.


At (0, 0) the curve y = x3 + x


The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:


The point on the curves y = (x – 3)2 where the tangent is parallel to the chord joining (3, 0) and (4, 1) is ____________.


The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0


Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point


The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is


If the curves y2 = 6x, 9x2 + by2 = 16, cut each other at right angles then the value of b is ______.


If m be the slope of a tangent to the curve e2y = 1 + 4x2, then ______.


For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×