Advertisements
Advertisements
प्रश्न
The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?
उत्तर
The slope of the given line y = 4x − 5 is 4
\[y^2 = a x^3 + b . . . \left( 1 \right)\]
\[2y \frac{dy}{dx} = 3a x^2 \]
\[ \Rightarrow \frac{dy}{dx} = \frac{3a x^2}{2y}\]
\[\text { Slope of tangent }= \left( \frac{dy}{dx} \right)_\left( 2, 3 \right) =\frac{12a}{6}=2a\]
\[\text { Given that }\]
\[\text { Slope of tangent = slope of given line }\]
\[2a = 4\]
\[ \Rightarrow a = 2\]
\[\text { Substituting this and }x= 2,y= 3 \text{ in (1), we get }\]
\[9 = 16 + b\]
\[ \Rightarrow b = - 7\]
\[\text { Hence, a}= 2 \text { and }b = - 7\]
APPEARS IN
संबंधित प्रश्न
Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.
Find the slope of the normal to the curve x = acos3θ, y = asin3θ at `theta = pi/4`
Find the equations of the tangent and normal to the given curves at the indicated points:
x = cos t, y = sin t at t = `pi/4`
Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).
The line y = mx + 1 is a tangent to the curve y2 = 4x if the value of m is
(A) 1
(B) 2
(C) 3
(D) 1/2
Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = −π/2 ?
Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?
At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?
Find the points on the curve\[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the y-axis ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − bx3 + 13x2 − 10x + 5 at (0, 5) ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?
Find the equation of the tangent to the curve x = θ + sin θ, y = 1 + cos θ at θ = π/4 ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = a(θ + sinθ), y = a(1 − cosθ) at θ ?
Find the equation of the normal to the curve x2 + 2y2 − 4x − 6y + 8 = 0 at the point whose abscissa is 2 ?
Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?
Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?
Write the equation of the normal to the curve y = x + sin x cos x at \[x = \frac{\pi}{2}\] ?
Write the angle between the curves y = e−x and y = ex at their point of intersections ?
Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .
The slope of the tangent to the curve x = 3t2 + 1, y = t3 −1 at x = 1 is ___________ .
The equation of the normal to the curve x = a cos3 θ, y = a sin3 θ at the point θ = π/4 is __________ .
Find the angle of intersection of the curves \[y^2 = 4ax \text { and } x^2 = 4by\] .
Find the equation of tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π that are parallel to the line x + 2y = 0.
Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis
The point on the curve y2 = x, where the tangent makes an angle of `pi/4` with x-axis is ______.
Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y
The curve y = `x^(1/5)` has at (0, 0) ______.
The equation of normal to the curve y = tanx at (0, 0) is ______.
At (0, 0) the curve y = x3 + x
The tangent to the parabola x2 = 2y at the point (1, `1/2`) makes with the x-axis an angle of ____________.
Tangent and normal are drawn at P(16, 16) on the parabola y2 = 16x, which intersect the axis of the parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and ∠CPB = θ, then a value of tan θ is:
Let `y = f(x)` be the equation of the curve, then equation of normal is
The normals to the curve x = a(θ + sinθ), y = a(1 – cosθ) at the points θ = (2n + 1)π, n∈I are all ______.
If m be the slope of a tangent to the curve e2y = 1 + 4x2, then ______.
If the tangent to the conic, y – 6 = x2 at (2, 10) touches the circle, x2 + y2 + 8x – 2y = k (for some fixed k) at a point (α, β); then (α, β) is ______.