हिंदी

Find the Equation of the Tangent and the Normal to the Following Curve at the Indicated Point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?    

उत्तर

\[4 x^2 + 9 y^2 = 36\]

\[\text { Differentiating both sides w.r.t.x }, \]

\[8x + 18y \frac{dy}{dx} = 0\]

\[ \Rightarrow 18y \frac{dy}{dx} = - 8x\]

\[ \Rightarrow \frac{dy}{dx} = \frac{- 8x}{18y} = \frac{- 4x}{9y}\]

\[\text { Slope of tangent },m= \left( \frac{dy}{dx} \right)_\left( 3 \cos\theta, 2 \sin\theta \right) =\frac{- 12\cos\theta}{18\sin\theta}=\frac{- 2 \cos\theta}{3 \sin\theta}\]

\[\text { Given} \left( x_1 , y_1 \right) = \left( 3 \cos\theta, 2 \sin\theta \right)\]

\[\text { Equation of tangent is },\]

\[y - y_1 = m \left( x - x_1 \right)\]

\[ \Rightarrow y - 2 \sin\theta = \frac{- 2 \cos\theta}{3 \sin\theta}\left( x - 3 \cos\theta \right)\]

\[ \Rightarrow 3y \sin\theta - 6 \sin^2 \theta = - 2x \cos\theta + 6 \cos^2 \theta\]

\[ \Rightarrow 2x \cos\theta + 3y \sin\theta = 6\left( \cos^2 \theta + \sin^2 \theta \right)\]

\[ \Rightarrow 2x \cos\theta + 3y \sin\theta = 6\]

\[\text { Equation of normal is },\]

\[y - y_1 = \frac{- 1}{m} \left( x - x_1 \right)\]

\[ \Rightarrow y - 2 \sin\theta = \frac{3 \sin\theta}{2 \cos\theta}\left( x - 3 \cos\theta \right)\]

\[ \Rightarrow 2y \cos\theta - 4 \sin\theta \cos\theta = 3x \sin\theta - 9 \sin\theta \cos\theta\]

\[ \Rightarrow 3x \sin\theta - 2y \cos\theta - 5\sin\theta \cos\theta = 0\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Tangents and Normals - Exercise 16.2 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 16 Tangents and Normals
Exercise 16.2 | Q 3.17 | पृष्ठ २७

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x4 − 6x3 + 13x2 − 10x + 5 at (0, 5)


Find the equations of the tangent and normal to the given curves at the indicated points:

x = cos ty = sin t at  t = `pi/4`


Find the equation of the normal at the point (am2am3) for the curve ay2 = x3.


Prove that the curves x = y2 and xy = k cut at right angles if 8k2 = 1. [Hint: Two curves intersect at right angle if the tangents to the curves at the point of intersection are perpendicular to each other.]


Find the equation of the tangent to the curve `y = sqrt(3x-2)`  which is parallel to the line 4x − 2y + 5 = 0.

 

Find the equation of the normal to curve y2 = 4x at the point (1, 2).


Show that the normal at any point θ to the curve x = a cosθ + a θ sinθ, y = a sinθ – aθ cosθ is at a constant distance from the origin.


Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = −π/2 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?


Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?


If the tangent to the curve y = x3 + ax + b at (1, − 6) is parallel to the line x − y + 5 = 0, find a and b ?


Find a point on the curve y = x3 − 3x where the tangent is parallel to the chord joining (1, −2) and (2, 2) ?


At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?


Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y2 = 4x at (1, 2)  ?


Find the equation of the tangent and the normal to the following curve at the indicated points \[x = \frac{2 a t^2}{1 + t^2}, y = \frac{2 a t^3}{1 + t^2}\text { at } t = \frac{1}{2}\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = at2, y = 2at at t = 1 ?


Find the equation of the tangent and the normal to the following curve at the indicated points  x = asect, y = btant at t ?


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?


Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?


Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?


Show that the following curve intersect orthogonally at the indicated point y2 = 8x and 2x2 +  y2 = 10 at  \[\left( 1, 2\sqrt{2} \right)\] ?


Write the equation of the normal to the curve y = x + sin x cos x at \[x = \frac{\pi}{2}\] ?


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .


The equation of the normal to the curve 3x2 − y2 = 8 which is parallel to x + 3y = 8 is ____________ .


The equation of the normal to the curve x = a cos3 θ, y = a sin3 θ at the point θ = π/4 is __________ .


Find the angle of intersection of the curves \[y^2 = 4ax \text { and } x^2 = 4by\] .

 

Find the equation of tangents to the curve y = cos(+ y), –2π ≤ x ≤ 2π that are parallel to the line + 2y = 0.


Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y


If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is ______.


The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.


The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.


For which value of m is the line y = mx + 1 a tangent to the curve y2 = 4x?


The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0


If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×