हिंदी

The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.

विकल्प

  • (2, –2), (–2, –34)

  • (2, 34), (–2, 0)

  • (0, 34), (–2, 0)

  • (2, 2), (–2, 34)

MCQ
रिक्त स्थान भरें

उत्तर

The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are (2, 2), (–2, 34).

Explanation:

Given that y = x3 – 12x + 18

Differentiating both sides w.r.t. x, we have

⇒ `"dy"/"dx"` = 3x2 – 12

Since the tangents are parallel to x-axis, then `"dy"/"dx"` = 0

∴ 3x2 – 12 = 0

⇒ x = ± 2

∴ `y_(x = 2)` = (2)3 – 12(2) + 18

= 8 – 24 + 18

= 2

`y_(x = -2)` = (– 2)3 – 12 (– 2) + 18

= – 8 + 24 + 18

= 34

∴ Points are (2, 2) and (– 2, 34).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Application Of Derivatives - Exercise [पृष्ठ १३९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 6 Application Of Derivatives
Exercise | Q 42 | पृष्ठ १३९

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

The equation of tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x – 5. Find the values of a and b.


Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t


Find the equations of all lines having slope 0 which are tangent to the curve  y =   `1/(x^2-2x + 3)`


Find points on the curve `x^2/9 + "y"^2/16 = 1` at which the tangent is parallel to x-axis.


Find the slope of the tangent and the normal to the following curve at the indicted point  y = x3 − x at x = 2 ?


Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = −π/2 ?


Find the point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slop is \[- \frac{1}{6}\]  ?


 Find the equation of the tangent and the normal to the following curve at the indicated point  x2 = 4y at (2, 1) ?


Find the equation of the tangent to the curve x = θ + sin θ, y = 1 + cos θ at θ = π/4 ?


Find the equation of the tangent and the normal to the following curve at the indicated points \[x = \frac{2 a t^2}{1 + t^2}, y = \frac{2 a t^3}{1 + t^2}\text { at } t = \frac{1}{2}\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = at2, y = 2at at t = 1 ?


Find the equation of the tangent to the curve x = sin 3ty = cos 2t at

\[t = \frac{\pi}{4}\] ?


Find the angle of intersection of the following curve  y = x2 and x2 + y2 = 20  ?


Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?


Write the coordinates of the point at which the tangent to the curve y = 2x2 − x + 1 is parallel to the line y = 3x + 9 ?


Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?


The equation of the normal to the curve y = x(2 − x) at the point (2, 0) is ________________ .


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .


If the curve ay + x2 = 7 and x3 = y cut orthogonally at (1, 1), then a is equal to _____________ .


Find the equation of tangents to the curve y = cos(+ y), –2π ≤ x ≤ 2π that are parallel to the line + 2y = 0.


Find the co-ordinates of the point on the curve `sqrt(x) + sqrt(y)` = 4 at which tangent is equally inclined to the axes


Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)


If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is ______.


The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0


Tangent is drawn to the ellipse `x^2/27 + y^2 = 1` at the point `(3sqrt(3) cos theta, sin theta), 0 < 0 < 1`. The sum of the intercepts on the axes made by the tangent is minimum if 0 is equal to


Two vertical poles of heights, 20 m and 80 m stand apart on a horizontal plane. The height (in meters) of the point of intersection of the lines joining the top of each pole to the foot of the other, From this horizontal plane is ______.


If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points `(3cosθ, sqrt(3) sinθ)` and `(-3sinθ, sqrt(3) cos θ); θ ∈(0, π/2)`; then `(2 cot β)/(sin 2θ)` is equal to ______.


For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×