हिंदी

Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2) - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)

योग

उत्तर

Given that the equation of the two curves are y2 = 4x  .....(i)

And x2 + y2 – 6x + 1 = 0   .....(ii)

Differentiating (i) w.r.t. x, we get `2y  "dy"/"dx"` = 4

⇒ `"dy"/"dx" = 2/y`

Slope of the tangent at (1, 2)

m1 = `2/2` = 1

Differentiating (ii) w.r.t. x

⇒ `2x + 2y * "dy"/"dx" - 6` = 0

⇒ `2y * "dy"/"dx"` = 6 – 2x

⇒ `"dy"/"dx" = (6 - 2x)/(2y)`

∴ Slope of the tangent at the same point (1, 2)

⇒ m2 = `(6 - 2 xx 1)/(2 xx 2)`

= `4/4`

= 1

We see that m1 = m2 = 1 at the point (1, 2).

Hence, the given circles touch each other at the same point (1, 2).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Application Of Derivatives - Exercise [पृष्ठ १३६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 6 Application Of Derivatives
Exercise | Q 16 | पृष्ठ १३६

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.


Find the equations of the tangent and normal to the given curves at the indicated points:

x = cos ty = sin t at  t = `pi/4`


Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.


Find the equation of the normals to the curve y = x3 + 2+ 6 which are parallel to the line x + 14y + 4 = 0.


The line y = x + 1 is a tangent to the curve y2 = 4x at the point

(A) (1, 2)

(B) (2, 1)

(C) (1, −2)

(D) (−1, 2)


Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?


At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?


At what points on the curve y = 2x2 − x + 1 is the tangent parallel to the line y = 3x + 4?


Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = a(θ + sinθ), y = a(1 − cosθ) at θ ?


Find the equation of  the tangents to the curve 3x2 – y2 = 8, which passes through the point (4/3, 0) ?


Find the angle of intersection of the following curve  x2 + 4y2 = 8 and x2 − 2y2 = 2 ?


Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x?


Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { and } xy = c^2\] ?


Write the equation of the normal to the curve y = x + sin x cos x at \[x = \frac{\pi}{2}\] ?


The equation of the normal to the curve y = x + sin x cos x at x = `π/2` is ___________ .


The point on the curve y = x2 − 3x + 2 where tangent is perpendicular to y = x is ________________ .


The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .


The curves y = aex and y = be−x cut orthogonally, if ___________ .


Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis


Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.


At what points on the curve x2 + y2 – 2x – 4y + 1 = 0, the tangents are parallel to the y-axis?


The curve y = `x^(1/5)` has at (0, 0) ______.


The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.


For which value of m is the line y = mx + 1 a tangent to the curve y2 = 4x?


Which of the following represent the slope of normal?


The line is y = x + 1 is a tangent to the curve y2 = 4x at the point.


If m be the slope of a tangent to the curve e2y = 1 + 4x2, then ______.


If the tangent to the conic, y – 6 = x2 at (2, 10) touches the circle, x2 + y2 + 8x – 2y = k (for some fixed k) at a point (α, β); then (α, β) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×