Advertisements
Advertisements
प्रश्न
Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)
उत्तर
Given that the equation of the two curves are y2 = 4x .....(i)
And x2 + y2 – 6x + 1 = 0 .....(ii)
Differentiating (i) w.r.t. x, we get `2y "dy"/"dx"` = 4
⇒ `"dy"/"dx" = 2/y`
Slope of the tangent at (1, 2)
m1 = `2/2` = 1
Differentiating (ii) w.r.t. x
⇒ `2x + 2y * "dy"/"dx" - 6` = 0
⇒ `2y * "dy"/"dx"` = 6 – 2x
⇒ `"dy"/"dx" = (6 - 2x)/(2y)`
∴ Slope of the tangent at the same point (1, 2)
⇒ m2 = `(6 - 2 xx 1)/(2 xx 2)`
= `4/4`
= 1
We see that m1 = m2 = 1 at the point (1, 2).
Hence, the given circles touch each other at the same point (1, 2).
APPEARS IN
संबंधित प्रश्न
Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.
Find the equations of the tangent and normal to the given curves at the indicated points:
x = cos t, y = sin t at t = `pi/4`
Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.
Find the equation of the normals to the curve y = x3 + 2x + 6 which are parallel to the line x + 14y + 4 = 0.
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
(A) (1, 2)
(B) (2, 1)
(C) (1, −2)
(D) (−1, 2)
Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?
At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?
At what points on the curve y = 2x2 − x + 1 is the tangent parallel to the line y = 3x + 4?
Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = a(θ + sinθ), y = a(1 − cosθ) at θ ?
Find the equation of the tangents to the curve 3x2 – y2 = 8, which passes through the point (4/3, 0) ?
Find the angle of intersection of the following curve x2 + 4y2 = 8 and x2 − 2y2 = 2 ?
Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x2 ?
Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { and } xy = c^2\] ?
Write the equation of the normal to the curve y = x + sin x cos x at \[x = \frac{\pi}{2}\] ?
The equation of the normal to the curve y = x + sin x cos x at x = `π/2` is ___________ .
The point on the curve y = x2 − 3x + 2 where tangent is perpendicular to y = x is ________________ .
The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .
The curves y = aex and y = be−x cut orthogonally, if ___________ .
Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis
Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.
At what points on the curve x2 + y2 – 2x – 4y + 1 = 0, the tangents are parallel to the y-axis?
The curve y = `x^(1/5)` has at (0, 0) ______.
The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.
For which value of m is the line y = mx + 1 a tangent to the curve y2 = 4x?
Which of the following represent the slope of normal?
The line is y = x + 1 is a tangent to the curve y2 = 4x at the point.
If m be the slope of a tangent to the curve e2y = 1 + 4x2, then ______.
If the tangent to the conic, y – 6 = x2 at (2, 10) touches the circle, x2 + y2 + 8x – 2y = k (for some fixed k) at a point (α, β); then (α, β) is ______.