हिंदी

The Curves Y = Aex and Y = Be−X Cut Orthogonally, If - Mathematics

Advertisements
Advertisements

प्रश्न

The curves y = aex and y = be−x cut orthogonally, if ___________ .

विकल्प

  • a = b

  • a = −b

  • ab = 1

  • ab = 2

MCQ

उत्तर

`ab = 1`

 

\[\text{ Given }: \]

\[y = a e^x . . . \left( 1 \right)\]

\[y = b e^{- x} . . . \left( 2 \right)\]

\[\text { Let the point of intersection of these two curves be }\left( x_1 , y_1 \right).\]

\[\text { Now,} \]

\[\text { On differentiating (1) w.r.t.x, we get }\]

\[\frac{dy}{dx} = a e^x \]

\[ \Rightarrow m_1 = \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) = a e^{x_1} \]

\[\text { Again, on differentiating (2) w.r.t.x, we get }\]

\[\frac{dy}{dx} = - b e^{- x} \]

\[ \Rightarrow m_2 = \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) = - b e^{- x_1} \]

\[\text { It is given that the curves cut orthogonally }.\]

\[ \therefore m_1 \times m_2 = - 1\]

\[ \Rightarrow a e^{x_1} \times \left( - b e^{- x_1} \right) = - 1\]

\[ \Rightarrow ab = 1\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Tangents and Normals - Exercise 16.5 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 16 Tangents and Normals
Exercise 16.5 | Q 18 | पृष्ठ ४३

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.


Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.


Find a point on the curve y = (x − 2)2 at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).


Find the equations of all lines having slope 0 which are tangent to the curve  y =   `1/(x^2-2x + 3)`


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)


Find the points on the curve y = x3 at which the slope of the tangent is equal to the y-coordinate of the point.


Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).


Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.


Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x^3} \text { at } x = 4\] ?


Find the slope of the tangent and the normal to the following curve at the indicted point  xy = 6 at (1, 6) ?


Find a point on the curve y = x3 − 3x where the tangent is parallel to the chord joining (1, −2) and (2, 2) ?


At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?


Find the points on the curve y = 3x2 − 9x + 8 at which the tangents are equally inclined with the axes ?


At what points on the curve y = 2x2 − x + 1 is the tangent parallel to the line y = 3x + 4?


Find the point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slop is \[- \frac{1}{6}\]  ?


At what points on the curve y = x2 − 4x + 5 is the tangent perpendicular to the line 2y + x = 7?


Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y = x2 at (0, 0) ?


Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?    


Find the equation of the tangent and the normal to the following curve at the indicated points:

x = 3cosθ − cos3θ, y = 3sinθ − sin3θ? 


Find an equation of normal line to the curve y = x3 + 2x + 6 which is parallel to the line x+ 14y + 4 = 0 ?


Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?


If the tangent line at a point (x, y) on the curve y = f(x) is parallel to x-axis, then write the value of \[\frac{dy}{dx}\] ?


Write the angle made by the tangent to the curve x = et cos t, y = et sin t at \[t = \frac{\pi}{4}\] with the x-axis ?


Write the equation of the normal to the curve y = x + sin x cos x at \[x = \frac{\pi}{2}\] ?


The equation to the normal to the curve y = sin x at (0, 0) is ___________ .


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .


The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .


The angle of intersection of the curves xy = a2 and x2 − y2 = 2a2 is ______________ .


The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is

(a) \[\left( 4, \frac{8}{3} \right)\]

(b) \[\left( - 4, \frac{8}{3} \right)\]

(c) \[\left( 4, - \frac{8}{3} \right)\]

(d) none of these

 


The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .


 Find the equation of tangent to the curve y = x2 +4x + 1 at (-1 , -2).


The equation of the normal to the curve y = sinx at (0, 0) is ______.


Find an angle θ, 0 < θ < `pi/2`, which increases twice as fast as its sine.


The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0


Tangent and normal are drawn at P(16, 16) on the parabola y2 = 16x, which intersect the axis of the parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and ∠CPB = θ, then a value of tan θ is:


Which of the following represent the slope of normal?


Two vertical poles of heights, 20 m and 80 m stand apart on a horizontal plane. The height (in meters) of the point of intersection of the lines joining the top of each pole to the foot of the other, From this horizontal plane is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×