Advertisements
Advertisements
प्रश्न
Find an equation of normal line to the curve y = x3 + 2x + 6 which is parallel to the line x+ 14y + 4 = 0 ?
उत्तर
Let (x1, y1) be a point on the curve where we need to find the normal.
Slope of the given line = \[\frac{- 1}{14}\]
\[\text { Since, the point lies on the curve } . \]
\[\text { Hence}, y_1 = {x_1}^3 + 2 x_1 + 6 \]
\[\text{ Now,} y = x^3 + 2x + 6\]
\[ \Rightarrow \frac{dy}{dx} = 3 x^2 + 2\]
\[\text { Slope of the tangent }= \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =3 {x_1}^2 +2\]
\[\text { Slope of the normal }=\frac{- 1}{\text { slope of the tangent}}= = \frac{- 1}{3 {x_1}^2 + 2}\]
\[\text { Given that},\]
\[\text{ slope of the normal=slope of the given line }\]
\[ \Rightarrow \frac{- 1}{3 {x_1}^2 + 2} = \frac{- 1}{14}\]
\[ \Rightarrow 3 {x_1}^2 + 2 = 14\]
\[ \Rightarrow 3 {x_1}^2 = 12\]
\[ \Rightarrow {x_1}^2 = 4\]
\[ \Rightarrow x_1 = \pm 2\]
\[\text { Case }-1: x_1 = 2\]
\[ y_1 = {x_1}^3 + 2 x_1 + 6 = 8 + 4 + 6 = 18\]
\[ \therefore \left( x_1 , y_1 \right) = \left( 2, 18 \right)\]
\[\text{ Slope of the normal },m=\frac{- 1}{14}\]
\[\text { Equation of normal is },\]
\[y - y_1 = m \left( x - x_1 \right)\]
\[ \Rightarrow y - 18 = \frac{- 1}{14}\left( x - 2 \right)\]
\[ \Rightarrow 14y - 252 = - x + 2\]
\[ \Rightarrow x + 14y - 254 = 0\]
\[\text { Case }-2: x_1 = - 2\]
\[ y_1 = {x_1}^3 + 2 x_1 + 6 = - 8 - 4 + 6 = - 6\]
\[ \therefore \left( x_1 , y_1 \right) = \left( - 2, - 6 \right)\]
\[\text { Slope of the normal},m=\frac{- 1}{14}\]
\[\text { Equation of normal is },\]
\[y - y_1 = m \left( x - x_1 \right)\]
\[ \Rightarrow y + 6 = \frac{- 1}{14}\left( x + 2 \right)\]
\[ \Rightarrow 14y + 84 = - x - 2\]
\[ \Rightarrow x + 14y + 86 = 0\]
APPEARS IN
संबंधित प्रश्न
Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.
Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.
The equation of tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x – 5. Find the values of a and b.
Find the equations of the tangent and normal to the curve `x^2/a^2−y^2/b^2=1` at the point `(sqrt2a,b)` .
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)
Find the points on the curve y = x3 at which the slope of the tangent is equal to the y-coordinate of the point.
Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
(A) (1, 2)
(B) (2, 1)
(C) (1, −2)
(D) (−1, 2)
Show that the normal at any point θ to the curve x = a cosθ + a θ sinθ, y = a sinθ – aθ cosθ is at a constant distance from the origin.
The line y = mx + 1 is a tangent to the curve y2 = 4x if the value of m is
(A) 1
(B) 2
(C) 3
(D) 1/2
Find the slope of the tangent and the normal to the following curve at the indicted point y = (sin 2x + cot x + 2)2 at x = π/2 ?
Find the points on the curve 2a2y = x3 − 3ax2 where the tangent is parallel to x-axis ?
Who that the tangents to the curve y = 7x3 + 11 at the points x = 2 and x = −2 are parallel ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 at (0, 0) ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[y^2 = \frac{x^3}{4 - x}at \left( 2, - 2 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4x at (1, 2) ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?
Find the equation of the tangent to the curve \[y = \sqrt{3x - 2}\] which is parallel to the 4x − 2y + 5 = 0 ?
Find the angle of intersection of the following curve y = x2 and x2 + y2 = 20 ?
If the straight line xcos \[\alpha\] +y sin \[\alpha\] = p touches the curve \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\] then prove that a2cos2 \[\alpha\] \[-\] b2sin2 \[\alpha\] = p2 ?
Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?
Write the slope of the normal to the curve \[y = \frac{1}{x}\] at the point \[\left( 3, \frac{1}{3} \right)\] ?
Write the coordinates of the point at which the tangent to the curve y = 2x2 − x + 1 is parallel to the line y = 3x + 9 ?
The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .
At what point the slope of the tangent to the curve x2 + y2 − 2x − 3 = 0 is zero
Find the equation of all the tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π, that are parallel to the line x + 2y = 0.
Show that the equation of normal at any point on the curve x = 3cos θ – cos3θ, y = 3sinθ – sin3θ is 4 (y cos3θ – x sin3θ) = 3 sin 4θ
The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is ______.
Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.
Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y
Tangent and normal are drawn at P(16, 16) on the parabola y2 = 16x, which intersect the axis of the parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and ∠CPB = θ, then a value of tan θ is:
The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.
For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.