हिंदी

Find an Equation of Normal Line to the Curve Y = X3 + 2x + 6 Which is Parallel to the Line X + 14y + 4 = 0? - Mathematics

Advertisements
Advertisements

प्रश्न

Find an equation of normal line to the curve y = x3 + 2x + 6 which is parallel to the line x+ 14y + 4 = 0 ?

उत्तर

Let (x1y1) be a point on the curve where we need to find the normal.
Slope of the given line = \[\frac{- 1}{14}\]

\[\text { Since, the point lies on the curve } . \]

\[\text { Hence}, y_1 = {x_1}^3 + 2 x_1 + 6 \]

\[\text{ Now,} y = x^3 + 2x + 6\]

\[ \Rightarrow \frac{dy}{dx} = 3 x^2 + 2\]

\[\text { Slope of the tangent }= \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =3 {x_1}^2 +2\]

\[\text { Slope of the normal }=\frac{- 1}{\text { slope of the tangent}}= = \frac{- 1}{3 {x_1}^2 + 2}\]

\[\text { Given that},\]

\[\text{ slope of the normal=slope of the given line }\]

\[ \Rightarrow \frac{- 1}{3 {x_1}^2 + 2} = \frac{- 1}{14}\]

\[ \Rightarrow 3 {x_1}^2 + 2 = 14\]

\[ \Rightarrow 3 {x_1}^2 = 12\]

\[ \Rightarrow {x_1}^2 = 4\]

\[ \Rightarrow x_1 = \pm 2\]

\[\text { Case }-1: x_1 = 2\]

\[ y_1 = {x_1}^3 + 2 x_1 + 6 = 8 + 4 + 6 = 18\]

\[ \therefore \left( x_1 , y_1 \right) = \left( 2, 18 \right)\]

\[\text{ Slope of the normal },m=\frac{- 1}{14}\]

\[\text { Equation of normal is },\]

\[y - y_1 = m \left( x - x_1 \right)\]

\[ \Rightarrow y - 18 = \frac{- 1}{14}\left( x - 2 \right)\]

\[ \Rightarrow 14y - 252 = - x + 2\]

\[ \Rightarrow x + 14y - 254 = 0\]

\[\text { Case }-2: x_1 = - 2\]

\[ y_1 = {x_1}^3 + 2 x_1 + 6 = - 8 - 4 + 6 = - 6\]

\[ \therefore \left( x_1 , y_1 \right) = \left( - 2, - 6 \right)\]

\[\text { Slope of the normal},m=\frac{- 1}{14}\]

\[\text { Equation of normal is },\]

\[y - y_1 = m \left( x - x_1 \right)\]

\[ \Rightarrow y + 6 = \frac{- 1}{14}\left( x + 2 \right)\]

\[ \Rightarrow 14y + 84 = - x - 2\]

\[ \Rightarrow x + 14y + 86 = 0\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Tangents and Normals - Exercise 16.2 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 16 Tangents and Normals
Exercise 16.2 | Q 10 | पृष्ठ २८

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


The equation of tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x – 5. Find the values of a and b.


Find the equations of the tangent and normal to the curve `x^2/a^2−y^2/b^2=1` at the point `(sqrt2a,b)` .


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)


Find the points on the curve y = x3 at which the slope of the tangent is equal to the y-coordinate of the point.


Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).


The line y = x + 1 is a tangent to the curve y2 = 4x at the point

(A) (1, 2)

(B) (2, 1)

(C) (1, −2)

(D) (−1, 2)


Show that the normal at any point θ to the curve x = a cosθ + a θ sinθ, y = a sinθ – aθ cosθ is at a constant distance from the origin.


The line y = mx + 1 is a tangent to the curve y2 = 4x if the value of m is

(A) 1

(B) 2

(C) 3

(D) 1/2


Find the slope of the tangent and the normal to the following curve at the indicted point  y = (sin 2x + cot x + 2)2 at x = π/2 ?


Find the points on the curve 2a2y = x3 − 3ax2 where the tangent is parallel to x-axis ?


Who that the tangents to the curve y = 7x3 + 11 at the points x = 2 and x = −2 are parallel ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y = x2 at (0, 0) ?


Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[y^2 = \frac{x^3}{4 - x}at \left( 2, - 2 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y2 = 4x at (1, 2)  ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?


Find the equation of the tangent to the curve  \[y = \sqrt{3x - 2}\] which is parallel to the 4x − 2y + 5 = 0 ?


Find the angle of intersection of the following curve  y = x2 and x2 + y2 = 20  ?


If the straight line xcos \[\alpha\] +y sin \[\alpha\] = p touches the curve  \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\] then prove that a2cos2 \[\alpha\] \[-\] b2sin\[\alpha\] = p?


Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?


Write the slope of the normal to the curve \[y = \frac{1}{x}\]  at the point \[\left( 3, \frac{1}{3} \right)\] ?


Write the coordinates of the point at which the tangent to the curve y = 2x2 − x + 1 is parallel to the line y = 3x + 9 ?


The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .


At what point the slope of the tangent to the curve x2 + y2 − 2x − 3 = 0 is zero


Find the equation of all the tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π, that are parallel to the line x + 2y = 0.


Show that the equation of normal at any point on the curve x = 3cos θ – cos3θ, y = 3sinθ – sin3θ is 4 (y cos3θ – x sin3θ) = 3 sin 4θ


The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is ______.


Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.


Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y


Tangent and normal are drawn at P(16, 16) on the parabola y2 = 16x, which intersect the axis of the parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and ∠CPB = θ, then a value of tan θ is:


The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.


For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×