हिंदी

The Angle Between the Curves Y2 = X and X2 = Y at (1, 1) is - Mathematics

Advertisements
Advertisements

प्रश्न

The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .

विकल्प

  • \[\tan^{- 1} \frac{4}{3}\]

  • \[\tan^{- 1} \frac{3}{4}\]

  • 90°

  • 45°

MCQ

उत्तर

\[\tan^{- 1} \frac{3}{4}\]

 

\[\text { Given }: \]

\[ y^2 = x . . . \left( 1 \right)\]

\[ x^2 = y . . . \left( 2 \right)\]

\[\text { Point} = \left( 1, 1 \right)\]

\[\text { On differentiating (1) w.r.t. x, we get }\]

\[2y \frac{dy}{dx} = 1\]

\[ \Rightarrow \frac{dy}{dx} = \frac{1}{2y}\]

\[ \Rightarrow m_1 = \frac{1}{2}\]

\[\text { On differentiating (2) w.r.t.x, we get }\]

\[2x = \frac{dy}{dx}\]

\[ \Rightarrow m_2 = 2\left( 1 \right) = 2\]

\[\text { Now,} \]

\[\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{\frac{1}{2} - 2}{1 + \frac{1}{2} \times 2} \right| = \frac{3}{4}\]

\[ \Rightarrow \theta = \tan^{- 1} \left( \frac{3}{4} \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Tangents and Normals - Exercise 16.5 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 16 Tangents and Normals
Exercise 16.5 | Q 9 | पृष्ठ ४२

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the equation of all lines having slope −1 that are tangents to the curve  `y = 1/(x -1), x != 1`


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)


Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`


Find the equation of the normal to curve y2 = 4x at the point (1, 2).


Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.


Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x^3} \text { at } x = 4\] ?


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a cos3 θ, y = a sin3 θ at θ = π/4 ?


If the tangent to the curve y = x3 + ax + b at (1, − 6) is parallel to the line x − y + 5 = 0, find a and b ?


At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?


At what points on the curve y = x2 − 4x + 5 is the tangent perpendicular to the line 2y + x = 7?


Find the equation of the tangent and the normal to the following curve at the indicated point  y = x2 at (0, 0) ?


Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?


 Find the equation of the tangent and the normal to the following curve at the indicated point  x2 = 4y at (2, 1) ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y2 = 4x at (1, 2)  ?


Find the equation of the tangent line to the curve y = x2 + 4x − 16 which is parallel to the line 3x − y + 1 = 0 ?


Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?


Find the angle of intersection of the following curve y2 = x and x2 = y  ?


Show that the following curve intersect orthogonally at the indicated point y2 = 8x and 2x2 +  y2 = 10 at  \[\left( 1, 2\sqrt{2} \right)\] ?


Show that the curves \[\frac{x^2}{a^2 + \lambda_1} + \frac{y^2}{b^2 + \lambda_1} = 1 \text { and } \frac{x^2}{a^2 + \lambda_2} + \frac{y^2}{b^2 + \lambda_2} = 1\] intersect at right angles ?


Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?


Write the value of \[\frac{dy}{dx}\] , if the normal to the curve y = f(x) at (x, y) is parallel to y-axis ?


If the tangent to a curve at a point (xy) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?


Write the angle between the curves y = e−x and y = ex at their point of intersections ?


The equation of the normal to the curve y = x + sin x cos x at x = `π/2` is ___________ .


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .


The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .


Find the angle of intersection of the curves \[y^2 = 4ax \text { and } x^2 = 4by\] .

 

Find the angle of intersection of the curves y2 = x and x2 = y.


Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.


The tangent to the curve given by x = et . cost, y = et . sint at t = `pi/4` makes with x-axis an angle ______.


Find an angle θ, 0 < θ < `pi/2`, which increases twice as fast as its sine.


The equation of tangent to the curve y(1 + x2) = 2 – x, where it crosses x-axis is ______.


The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.


The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.


Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.


Let `y = f(x)` be the equation of the curve, then equation of normal is


Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point


The normal at the point (1, 1) on the curve `2y + x^2` = 3 is


The normal of the curve given by the equation x = a(sinθ + cosθ), y = a(sinθ – cosθ) at the point θ is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×