हिंदी

Find the Equation of the Tangent and the Normal to the Following Curve at the Indicated Point Y2 = 4x at (1, 2) ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the tangent and the normal to the following curve at the indicated point  y2 = 4x at (1, 2)  ?

उत्तर

\[y^2 = 4x\]

\[\text { Differentiating both sides w.r.t.x,} \]

\[2y \frac{dy}{dx} = 4\]

\[ \Rightarrow \frac{dy}{dx} = \frac{2}{y}\]

\[\text { Slope of tangent,}m= \left( \frac{dy}{dx} \right)_\left( 1, 2 \right) =\frac{2}{2}=1\]

\[\text { Given } \left( x_1 , y_1 \right) = \left( 1, 2 \right)\]

\[\text{ Equation of tangent is },\]

\[y - y_1 = m \left( x - x_1 \right)\]

\[ \Rightarrow y - 2 = 1\left( x - 1 \right)\]

\[ \Rightarrow y - 2 = x - 1\]

\[ \Rightarrow x - y + 1 = 0\]

\[\text { Equation of normal is},\]

\[y - y_1 = \frac{- 1}{m} \left( x - x_1 \right)\]

\[ \Rightarrow y - 2 = - 1\left( x - 1 \right)\]

\[ \Rightarrow y - 2 = - x + 1\]

\[ \Rightarrow x + y - 3 = 0\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Tangents and Normals - Exercise 16.2 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 16 Tangents and Normals
Exercise 16.2 | Q 3.16 | पृष्ठ २७

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the slope of the tangent to the curve y = x3 − 3x + 2 at the point whose x-coordinate is 3.


Find the equation of all lines having slope −1 that are tangents to the curve  `y = 1/(x -1), x != 1`


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x4 − 6x3 + 13x2 − 10x + 5 at (0, 5)


Find the equation of the normal at the point (am2am3) for the curve ay2 = x3.


Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).


Find the slope of the tangent and the normal to the following curve at the indicted point  xy = 6 at (1, 6) ?


Who that the tangents to the curve y = 7x3 + 11 at the points x = 2 and x = −2 are parallel ?


Find the equation of the normal to y = 2x3 − x2 + 3 at (1, 4) ?


Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3  ?


Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?


Find the angle of intersection of the following curve  x2 + 4y2 = 8 and x2 − 2y2 = 2 ?


Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?


Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and } \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1\] ?


If the tangent to a curve at a point (xy) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?


Write the angle made by the tangent to the curve x = et cos t, y = et sin t at \[t = \frac{\pi}{4}\] with the x-axis ?


Write the equation on the tangent to the curve y = x2 − x + 2 at the point where it crosses the y-axis ?


Write the slope of the normal to the curve \[y = \frac{1}{x}\]  at the point \[\left( 3, \frac{1}{3} \right)\] ?


The equation to the normal to the curve y = sin x at (0, 0) is ___________ .


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .


The slope of the tangent to the curve x = t2 + 3 t − 8, y = 2t2 − 2t − 5 at point (2, −1) is ________________ .


Any tangent to the curve y = 2x7 + 3x + 5 __________________ .


The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is

(a) \[\left( 4, \frac{8}{3} \right)\]

(b) \[\left( - 4, \frac{8}{3} \right)\]

(c) \[\left( 4, - \frac{8}{3} \right)\]

(d) none of these

 


Find an angle θ, 0 < θ < `pi/2`, which increases twice as fast as its sine.


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.


The equation of tangent to the curve y(1 + x2) = 2 – x, where it crosses x-axis is ______.


The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.


The equation of normal to the curve y = tanx at (0, 0) is ______.


For which value of m is the line y = mx + 1 a tangent to the curve y2 = 4x?


The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0


If `tan^-1x + tan^-1y + tan^-1z = pi/2`, then


Tangent is drawn to the ellipse `x^2/27 + y^2 = 1` at the point `(3sqrt(3) cos theta, sin theta), 0 < 0 < 1`. The sum of the intercepts on the axes made by the tangent is minimum if 0 is equal to


Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point


The line is y = x + 1 is a tangent to the curve y2 = 4x at the point.


The normal at the point (1, 1) on the curve `2y + x^2` = 3 is


The curve `(x/a)^n + (y/b)^n` = 2, touches the line `x/a + y/b` = 2 at the point (a, b) for n is equal to ______.


For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.


Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×