Advertisements
Advertisements
प्रश्न
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4x at (1, 2) ?
उत्तर
\[y^2 = 4x\]
\[\text { Differentiating both sides w.r.t.x,} \]
\[2y \frac{dy}{dx} = 4\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2}{y}\]
\[\text { Slope of tangent,}m= \left( \frac{dy}{dx} \right)_\left( 1, 2 \right) =\frac{2}{2}=1\]
\[\text { Given } \left( x_1 , y_1 \right) = \left( 1, 2 \right)\]
\[\text{ Equation of tangent is },\]
\[y - y_1 = m \left( x - x_1 \right)\]
\[ \Rightarrow y - 2 = 1\left( x - 1 \right)\]
\[ \Rightarrow y - 2 = x - 1\]
\[ \Rightarrow x - y + 1 = 0\]
\[\text { Equation of normal is},\]
\[y - y_1 = \frac{- 1}{m} \left( x - x_1 \right)\]
\[ \Rightarrow y - 2 = - 1\left( x - 1 \right)\]
\[ \Rightarrow y - 2 = - x + 1\]
\[ \Rightarrow x + y - 3 = 0\]
APPEARS IN
संबंधित प्रश्न
Find the slope of the tangent to the curve y = x3 − 3x + 2 at the point whose x-coordinate is 3.
Find the equation of all lines having slope −1 that are tangents to the curve `y = 1/(x -1), x != 1`
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (0, 5)
Find the equation of the normal at the point (am2, am3) for the curve ay2 = x3.
Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).
Find the slope of the tangent and the normal to the following curve at the indicted point xy = 6 at (1, 6) ?
Who that the tangents to the curve y = 7x3 + 11 at the points x = 2 and x = −2 are parallel ?
Find the equation of the normal to y = 2x3 − x2 + 3 at (1, 4) ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3 ?
Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?
Find the angle of intersection of the following curve x2 + 4y2 = 8 and x2 − 2y2 = 2 ?
Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?
Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and } \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1\] ?
If the tangent to a curve at a point (x, y) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?
Write the angle made by the tangent to the curve x = et cos t, y = et sin t at \[t = \frac{\pi}{4}\] with the x-axis ?
Write the equation on the tangent to the curve y = x2 − x + 2 at the point where it crosses the y-axis ?
Write the slope of the normal to the curve \[y = \frac{1}{x}\] at the point \[\left( 3, \frac{1}{3} \right)\] ?
The equation to the normal to the curve y = sin x at (0, 0) is ___________ .
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .
The slope of the tangent to the curve x = t2 + 3 t − 8, y = 2t2 − 2t − 5 at point (2, −1) is ________________ .
Any tangent to the curve y = 2x7 + 3x + 5 __________________ .
The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is
(a) \[\left( 4, \frac{8}{3} \right)\]
(b) \[\left( - 4, \frac{8}{3} \right)\]
(c) \[\left( 4, - \frac{8}{3} \right)\]
(d) none of these
Find an angle θ, 0 < θ < `pi/2`, which increases twice as fast as its sine.
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.
The equation of tangent to the curve y(1 + x2) = 2 – x, where it crosses x-axis is ______.
The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.
The equation of normal to the curve y = tanx at (0, 0) is ______.
For which value of m is the line y = mx + 1 a tangent to the curve y2 = 4x?
The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0
If `tan^-1x + tan^-1y + tan^-1z = pi/2`, then
Tangent is drawn to the ellipse `x^2/27 + y^2 = 1` at the point `(3sqrt(3) cos theta, sin theta), 0 < 0 < 1`. The sum of the intercepts on the axes made by the tangent is minimum if 0 is equal to
Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point
The line is y = x + 1 is a tangent to the curve y2 = 4x at the point.
The normal at the point (1, 1) on the curve `2y + x^2` = 3 is
The curve `(x/a)^n + (y/b)^n` = 2, touches the line `x/a + y/b` = 2 at the point (a, b) for n is equal to ______.
For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.
Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3