Advertisements
Advertisements
प्रश्न
Find the equation of the normal to y = 2x3 − x2 + 3 at (1, 4) ?
उत्तर
\[y = 2 x^3 - x^2 + 3\]
\[\text { Differentiating both sides w.r.t.x,} \]
\[\frac{dy}{dx} = 6 x^2 - 2x\]
\[\text { Slope of tangent } = \left( \frac{dy}{dx} \right)_\left( 1, 4 \right) =6 \left( 1 \right)^2 -2\left( 1 \right)=4\]
\[\text { Slope of normal } =\frac{- 1}{\text { Slope of tangent}}=\frac{- 1}{4}\]
\[\text { Given }\left( x_1 , y_1 \right) = \left( 1, 4 \right)\]
\[\text { Equation of normal is},\]
\[y - y_1 = m \left( x - x_1 \right)\]
\[ \Rightarrow y - 4 = \frac{- 1}{4} \left( x - 1 \right)\]
\[ \Rightarrow 4y - 16 = - x + 1\]
\[ \Rightarrow x + 4y = 17\]
APPEARS IN
संबंधित प्रश्न
Find the equations of the tangent and normal to the curve x = a sin3θ and y = a cos3θ at θ=π/4.
Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.
Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.
Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?
Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?
Find the points on the curve xy + 4 = 0 at which the tangents are inclined at an angle of 45° with the x-axis ?
Find the points on the curve y = 3x2 − 9x + 8 at which the tangents are equally inclined with the axes ?
Find the point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slop is \[- \frac{1}{6}\] ?
Find the points on the curve x2 + y2 = 13, the tangent at each one of which is parallel to the line 2x + 3y = 7 ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 at (0, 0) ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?
Find the equation of the tangent and the normal to the following curve at the indicated point xy = c2 at \[\left( ct, \frac{c}{t} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?
Find the equation of the tangent line to the curve y = x2 + 4x − 16 which is parallel to the line 3x − y + 1 = 0 ?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?
Find the equations of all lines of slope zero and that are tangent to the curve \[y = \frac{1}{x^2 - 2x + 3}\] ?
Find the equation of the tangent to the curve x2 + 3y − 3 = 0, which is parallel to the line y= 4x − 5 ?
Show that the following curve intersect orthogonally at the indicated point x2 = 4y and 4y + x2 = 8 at (2, 1) ?
Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and } \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1\] ?
Write the coordinates of the point on the curve y2 = x where the tangent line makes an angle \[\frac{\pi}{4}\] with x-axis ?
Write the angle between the curves y = e−x and y = ex at their point of intersections ?
The equation of the normal to the curve y = x(2 − x) at the point (2, 0) is ________________ .
The curves y = aex and y = be−x cut orthogonally, if ___________ .
The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is
(a) \[\left( 4, \frac{8}{3} \right)\]
(b) \[\left( - 4, \frac{8}{3} \right)\]
(c) \[\left( 4, - \frac{8}{3} \right)\]
(d) none of these
The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .
The normal to the curve x2 = 4y passing through (1, 2) is _____________ .
The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______.
The equation of the normal to the curve y = sinx at (0, 0) is ______.
The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.
The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.
The equation of normal to the curve y = tanx at (0, 0) is ______.
The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0
The tangent to the curve y = 2x2 - x + 1 is parallel to the line y = 3x + 9 at the point ____________.
The tangent to the curve y = x2 + 3x will pass through the point (0, -9) if it is drawn at the point ____________.
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
If the curves y2 = 6x, 9x2 + by2 = 16, cut each other at right angles then the value of b is ______.
Two vertical poles of heights, 20 m and 80 m stand apart on a horizontal plane. The height (in meters) of the point of intersection of the lines joining the top of each pole to the foot of the other, From this horizontal plane is ______.
If the tangent to the conic, y – 6 = x2 at (2, 10) touches the circle, x2 + y2 + 8x – 2y = k (for some fixed k) at a point (α, β); then (α, β) is ______.