हिंदी

Write the Coordinates of the Point on the Curve Y2 = X Where the Tangent Line Makes an Angle π 4 with X-axis ? - Mathematics

Advertisements
Advertisements

प्रश्न

Write the coordinates of the point on the curve y2 = x where the tangent line makes an angle \[\frac{\pi}{4}\] with x-axis  ?

उत्तर

Let the required point be (x1, y1).
The tangent makes an angle of 45o with the x-axis.
∴ Slope of the tangent = tan 45o = 1

\[\text { Since, the point lies on the curve } . \]

\[\text { Hence }, {y_1}^2 = x_1 \]

\[\text { Now,} y^2 = x\]

\[ \Rightarrow 2y\frac{dy}{dx} = 1\]

\[ \Rightarrow \frac{dy}{dx} = \frac{1}{2y}\]

\[\text { Slope of the tangent } = \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =\frac{1}{2 y_1}\]

\[\text { Given }:\]

\[\frac{1}{2 y_1} = 1\]

\[ \Rightarrow 2 y_1 = 1\]

\[ \Rightarrow y_1 = \frac{1}{2}\]

\[\text { Now,} \]

\[ x_1 = {y_1}^2 = \left( \frac{1}{2} \right)^2 = \frac{1}{4}\]

\[ \therefore \left( x_1 , y_1 \right) = \left( \frac{1}{4}, \frac{1}{2} \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Tangents and Normals - Exercise 16.4 [पृष्ठ ४१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 16 Tangents and Normals
Exercise 16.4 | Q 8 | पृष्ठ ४१

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the equations of the tangent and normal to the curve x = a sin3θ and y = a cos3θ at θ=π/4.


Find the equation of all lines having slope 2 which are tangents to the curve `y =   1/(x- 3), x != 3`


Find the equations of the tangent and normal to the given curves at the indicated points:

x = cos ty = sin t at  t = `pi/4`


Show that the tangents to the curve y = 7x3 + 11 at the points where x = 2 and x = −2 are parallel.


Find the points on the curve y = x3 at which the slope of the tangent is equal to the y-coordinate of the point.


Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).


The line y = mx + 1 is a tangent to the curve y2 = 4x if the value of m is

(A) 1

(B) 2

(C) 3

(D) 1/2


Find the slope of the tangent and the normal to the following curve at the indicted point  y = (sin 2x + cot x + 2)2 at x = π/2 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  xy = 6 at (1, 6) ?


Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?


Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?


Find the point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slop is \[- \frac{1}{6}\]  ?


Find the points on the curve 2a2y = x3 − 3ax2 where the tangent is parallel to x-axis ?


Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3  ?


Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = at2, y = 2at at t = 1 ?


Determine the equation(s) of tangent (s) line to the curve y = 4x3 − 3x + 5 which are perpendicular to the line 9y + x + 3 = 0 ?


Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?


Find the angle of intersection of the following curve  2y2 = x3 and y2 = 32x ?


Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x?


Show that the following set of curve intersect orthogonally x2 + 4y2 = 8 and x2 − 2y2 = 4 ?


Show that the following curve intersect orthogonally at the indicated point x2 = 4y and 4y + x2 = 8 at (2, 1) ?


If the tangent line at a point (x, y) on the curve y = f(x) is parallel to x-axis, then write the value of \[\frac{dy}{dx}\] ?


Write the angle made by the tangent to the curve x = et cos t, y = et sin t at \[t = \frac{\pi}{4}\] with the x-axis ?


Write the angle between the curves y2 = 4x and x2 = 2y − 3 at the point (1, 2) ?


Write the slope of the normal to the curve \[y = \frac{1}{x}\]  at the point \[\left( 3, \frac{1}{3} \right)\] ?


Find the equation of tangents to the curve y = cos(+ y), –2π ≤ x ≤ 2π that are parallel to the line + 2y = 0.


The tangent to the curve given by x = et . cost, y = et . sint at t = `pi/4` makes with x-axis an angle ______.


Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y


The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.


The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 – 2 = 0 intersect at an angle of ______.


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0.


The normals to the curve x = a(θ + sinθ), y = a(1 – cosθ) at the points θ = (2n + 1)π, n∈I are all ______.


The normal of the curve given by the equation x = a(sinθ + cosθ), y = a(sinθ – cosθ) at the point θ is ______.


If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points `(3cosθ, sqrt(3) sinθ)` and `(-3sinθ, sqrt(3) cos θ); θ ∈(0, π/2)`; then `(2 cot β)/(sin 2θ)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×