Advertisements
Advertisements
प्रश्न
Write the angle between the curves y2 = 4x and x2 = 2y − 3 at the point (1, 2) ?
उत्तर
\[\text { Given }: \]
\[ y^2 = 4x . . . \left( 1 \right)\]
\[ x^2 = 2y - 3 . . . \left( 2 \right)\]
\[\text { On differentiating (1) w.r.t.x, we get }\]
\[2y\frac{dy}{dx} = 4\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2}{y}\]
\[ \Rightarrow m_1 = \left( \frac{dy}{dx} \right)_\left( 1, 2 \right) = \frac{2}{2} = 1\]
\[\text { On differentiating (2) w.r.t.x, we get }\]
\[2x = 2\frac{dy}{dx}\]
\[ \Rightarrow \frac{dy}{dx} = x\]
\[ \Rightarrow m_2 = \left( \frac{dy}{dx} \right)_\left( 1, 2 \right) = 1\]
\[\text { Thus, we get }\]
\[\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|\]
\[ \Rightarrow \tan \theta = \left| \frac{1 - 1}{1 + 1} \right|\]
\[ \Rightarrow \tan \theta = 0\]
\[ \Rightarrow \theta = 0^o\]
APPEARS IN
संबंधित प्रश्न
Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t
Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.
Find points on the curve `x^2/9 + "y"^2/16 = 1` at which the tangent is parallel to x-axis.
Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`
Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?
Find the points on the curve xy + 4 = 0 at which the tangents are inclined at an angle of 45° with the x-axis ?
Who that the tangents to the curve y = 7x3 + 11 at the points x = 2 and x = −2 are parallel ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3 ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( x_0 , y_0 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?
Find the equation of the tangent to the curve x = θ + sin θ, y = 1 + cos θ at θ = π/4 ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = at2, y = 2at at t = 1 ?
Find the equation of the normal to the curve ay2 = x3 at the point (am2, am3) ?
Find an equation of normal line to the curve y = x3 + 2x + 6 which is parallel to the line x+ 14y + 4 = 0 ?
Determine the equation(s) of tangent (s) line to the curve y = 4x3 − 3x + 5 which are perpendicular to the line 9y + x + 3 = 0 ?
Find the equation of a normal to the curve y = x loge x which is parallel to the line 2x − 2y + 3 = 0 ?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?
Find the equations of all lines of slope zero and that are tangent to the curve \[y = \frac{1}{x^2 - 2x + 3}\] ?
At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?
Find the angle of intersection of the following curve x2 + y2 − 4x − 1 = 0 and x2 + y2 − 2y − 9 = 0 ?
Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?
Prove that the curves y2 = 4x and x2 + y2 - 6x + 1 = 0 touch each other at the point (1, 2) ?
Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?
If the tangent line at a point (x, y) on the curve y = f(x) is parallel to x-axis, then write the value of \[\frac{dy}{dx}\] ?
Write the slope of the normal to the curve \[y = \frac{1}{x}\] at the point \[\left( 3, \frac{1}{3} \right)\] ?
Write the coordinates of the point at which the tangent to the curve y = 2x2 − x + 1 is parallel to the line y = 3x + 9 ?
The slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at the point (2, −1) is _____________ .
Find the angle of intersection of the curves y = 4 – x2 and y = x2.
Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)
The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.
The equation of normal to the curve y = tanx at (0, 0) is ______.
The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0
Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.
Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis.
The number of common tangents to the circles x2 + y2 – 4x – 6x – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is
If the tangent to the curve y = x + siny at a point (a, b) is parallel to the line joining `(0, 3/2)` and `(1/2, 2)`, then ______.
The normals to the curve x = a(θ + sinθ), y = a(1 – cosθ) at the points θ = (2n + 1)π, n∈I are all ______.