हिंदी

Find the Equation of the Tangent and the Normal to the Following Curve at the Indicated Point X 2 a 2 − Y 2 B 2 = 1 at ( X 0 , Y 0 ) ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( x_0 , y_0 \right)\] ?

उत्तर

\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\]

\[\text { Differentiating both sides w.r.t.x,} \]

\[\frac{2x}{a^2} - \frac{2y}{b^2}\frac{dy}{dx} = 0\]

\[ \Rightarrow \frac{2y}{b^2}\frac{dy}{dx} = \frac{2x}{a^2}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{x b^2}{y a^2}\]

\[\text { Slope of tangent,}m= \left( \frac{dy}{dx} \right)_\left( x_0 , y_0 \right) =\frac{x_0 b^2}{y_0 a^2}\]

\[\text { Equation of tangent is },\]

\[y - y_1 = m \left( x - x_1 \right)\]

\[ \Rightarrow y - y_0 = \frac{x_0 b^2}{y_0 a^2}\left( x - x_0 \right)\]

\[ \Rightarrow y y_0 a^2 - {y_0}^2 a^2 = x x_0 b^2 - {x_0}^2 b^2 \]

\[x x_0 b^2 - y y_0 a^2 = {x_0}^2 b^2 - {y_0}^2 a^2 . . . \left( 1 \right)\]

\[\text { Since }\left( x_0 , y_0 \right)\text { lies on the given curve},\]

\[ \Rightarrow \frac{{x_0}^2}{a^2} - \frac{{y_0}^2}{b^2} = 1\]

\[ \Rightarrow {x_0}^2 b^2 - {y_0}^2 a^2 = a^2 b^2 \]

\[\text { Substituting this in (1), we get }\]

\[ \Rightarrow x x_0 b^2 - y y_0 a^2 = a^2 b^2 \]

\[\text { Dividing this by} a^2 b^2 \]

\[\frac{x x_0}{a^2} - \frac{y y_0}{b^2} = 1\]

\[\text { Equation of normal is,}\]

\[y - y_1 = m \left( x - x_1 \right)\]

\[ \Rightarrow y - y_0 = \frac{- y_0 a^2}{x_0 b^2}\left( x - x_0 \right)\]

\[ \Rightarrow y x_0 b^2 - x_0 y_0 b^2 = - x y_0 a^2 + x_0 y_0 a^2 \]

\[ \Rightarrow x y_0 a^2 + y x_0 b^2 = x_0 y_0 a^2 + x_0 y_0 b^2 \]

\[ \Rightarrow x y_0 a^2 + y x_0 b^2 = x_0 y_0 \left( a^2 + b^2 \right)\]

\[\text { Dividing by } x_0 y_0 \]

\[\frac{a^2 x}{x_0} + \frac{b^2 y}{y_0} = a^2 + b^2\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Tangents and Normals - Exercise 16.2 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 16 Tangents and Normals
Exercise 16.2 | Q 3.13 | पृष्ठ २७

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the equation of tangents to the curve y= x3 + 2x – 4, which are perpendicular to line x + 14y + 3 = 0.


Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.


Find the slope of the normal to the curve x = acos3θy = asin3θ at `theta = pi/4`


Find the equation of all lines having slope 2 which are tangents to the curve `y =   1/(x- 3), x != 3`


Find points on the curve `x^2/9 + "y"^2/16 = 1` at which the tangent is parallel to x-axis.


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x2 at (0, 0)


Find the equations of the tangent and normal to the given curves at the indicated points:

x = cos ty = sin t at  t = `pi/4`


Find the equation of the normal at the point (am2am3) for the curve ay2 = x3.


Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`


Show that the normal at any point θ to the curve x = a cosθ + a θ sinθ, y = a sinθ – aθ cosθ is at a constant distance from the origin.


Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.


Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = −π/2 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  x2 + 3y + y2 = 5 at (1, 1)  ?


Find a point on the curve y = x3 − 3x where the tangent is parallel to the chord joining (1, −2) and (2, 2) ?


Find the points on the curve x2 + y2 = 13, the tangent at each one of which is parallel to the line 2x + 3y = 7 ?


Find the points on the curve y = x3 where the slope of the tangent is equal to the x-coordinate of the point ?


 Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1? 


Find the equation of the tangent to the curve  \[y = \sqrt{3x - 2}\] which is parallel to the 4x − 2y + 5 = 0 ?


Find the angle of intersection of the following curve  2y2 = x3 and y2 = 32x ?


Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?


Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?


If the tangent line at a point (x, y) on the curve y = f(x) is parallel to y-axis, find the value of \[\frac{dx}{dy}\] ?


Find the slope of the normal at the point 't' on the curve \[x = \frac{1}{t}, y = t\] ?


Write the angle between the curves y2 = 4x and x2 = 2y − 3 at the point (1, 2) ?


The equation to the normal to the curve y = sin x at (0, 0) is ___________ .


The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .


The equation of the normal to the curve x = a cos3 θ, y = a sin3 θ at the point θ = π/4 is __________ .


The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .


The normal at the point (1, 1) on the curve 2y + x2 = 3 is _____________ .


Find the equation of tangents to the curve y = cos(+ y), –2π ≤ x ≤ 2π that are parallel to the line + 2y = 0.


Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis


Find the condition for the curves `x^2/"a"^2 - y^2/"b"^2` = 1; xy = c2 to interest orthogonally.


Find an angle θ, 0 < θ < `pi/2`, which increases twice as fast as its sine.


Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y


The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.


The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0.


The number of common tangents to the circles x2 + y2 – 4x – 6x – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×