Advertisements
Advertisements
प्रश्न
Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1?
उत्तर
\[y= x^4 - 6 x^3 + 13 x^2 - 10x + 5\]
\[\text{ When }x = 1 , \]
`y = 1 - 6 + 13 - 10 + 5 = 3`
\[\text { So}, \left( x_1 , y_1 \right) = \left( 1, 3 \right)\]
\[\text { Now,} y= x^4 - 6 x^3 + 13 x^2 - 10x + 5\]
\[\text { Differentiating both sides w.r.t.x,} \]
\[\frac{dy}{dx} = 4 x^3 - 18 x^2 + 26x - 10\]
\[\text { Slope of tangent },m= \left( \frac{dy}{dx} \right)_\left( 1, 3 \right) =4-18+26 - 10 = 2\]
\[\text { Equation of tangent is },\]
\[y - y_1 = 2 \left( x - x_1 \right)\]
\[ \Rightarrow y - 3 = 2\left( x - 1 \right)\]
\[ \Rightarrow y - 3 = 2x - 2\]
\[ \Rightarrow 2x - y + 1 = 0\]
\[\text { Equation of normal is
},\]
\[y - y_1 = \frac{- 1}{m} \left( x - x_1 \right)\]
\[ \Rightarrow y - 3 = \frac{- 1}{2} \left( x - 1 \right)\]
\[ \Rightarrow 2y - 6 = - x + 1\]
\[ \Rightarrow x + 2y - 7 = 0\]
APPEARS IN
संबंधित प्रश्न
Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is `6sqrt3` r.
Find the equations of the tangent and normal to the curve `x^2/a^2−y^2/b^2=1` at the point `(sqrt2a,b)` .
Find points on the curve `x^2/9 + "y"^2/16 = 1` at which the tangent is parallel to x-axis.
Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`
Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.
Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?
Find the points on the curve y = 3x2 − 9x + 8 at which the tangents are equally inclined with the axes ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { at } \left( x_1 , y_1 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = a(θ + sinθ), y = a(1 − cosθ) at θ ?
Find the angle of intersection of the following curve y2 = x and x2 = y ?
Find the angle of intersection of the following curve 2y2 = x3 and y2 = 32x ?
Show that the following set of curve intersect orthogonally x2 + 4y2 = 8 and x2 − 2y2 = 4 ?
Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?
Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { and } xy = c^2\] ?
Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and } \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1\] ?
Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?
Write the equation of the normal to the curve y = x + sin x cos x at \[x = \frac{\pi}{2}\] ?
Write the angle between the curves y2 = 4x and x2 = 2y − 3 at the point (1, 2) ?
The equation to the normal to the curve y = sin x at (0, 0) is ___________ .
The slope of the tangent to the curve x = t2 + 3 t − 8, y = 2t2 − 2t − 5 at point (2, −1) is ________________ .
The slope of the tangent to the curve x = 3t2 + 1, y = t3 −1 at x = 1 is ___________ .
The equation of the normal to the curve x = a cos3 θ, y = a sin3 θ at the point θ = π/4 is __________ .
The normal at the point (1, 1) on the curve 2y + x2 = 3 is _____________ .
Find the equation of tangent to the curve y = x2 +4x + 1 at (-1 , -2).
The abscissa of the point on the curve 3y = 6x – 5x3, the normal at which passes through origin is ______.
The tangent to the curve given by x = et . cost, y = et . sint at t = `pi/4` makes with x-axis an angle ______.
Find an angle θ, 0 < θ < `pi/2`, which increases twice as fast as its sine.
The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.
The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.
The equation of normal to the curve y = tanx at (0, 0) is ______.
`"sin"^"p" theta "cos"^"q" theta` attains a maximum, when `theta` = ____________.
Tangent is drawn to the ellipse `x^2/27 + y^2 = 1` at the point `(3sqrt(3) cos theta, sin theta), 0 < 0 < 1`. The sum of the intercepts on the axes made by the tangent is minimum if 0 is equal to
The slope of the tangentto the curve `x= t^2 + 3t - 8, y = 2t^2 - 2t - 5` at the point `(2, -1)` is
If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.
If the curves y2 = 6x, 9x2 + by2 = 16, cut each other at right angles then the value of b is ______.