Advertisements
Advertisements
प्रश्न
The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.
विकल्प
(0, 1)
`(- 1/2, 0)`
(2, 0)
(0, 2)
उत्तर
The tangent to the curve y = e2x at the point (0, 1) meets x-axis at `(- 1/2, 0)`.
Explanation:
Equation of the curve is y = e2x
Slope of the tangent `"dy"/"dx"` = 2e2x
⇒ `"dy"/"dx"_(0, 1)` = 2 · e0 = 2
∴ Equation of tangent to the curve at (0, 1) is
y –1 = 2(x – 0)
⇒ y – 1 = 2x
⇒ y – 2x = 1
Since the tangent meets x-axis where y = 0
∴ 0 – 2x = 1
⇒ x = `(-1)/2`
So the point is `(- 1/2, 0)`.
APPEARS IN
संबंधित प्रश्न
Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.
Find the equation of the tangent to the curve `y = sqrt(3x-2)` which is parallel to the line 4x − 2y + 5 = 0.
Find the equations of the tangent and the normal, to the curve 16x2 + 9y2 = 145 at the point (x1, y1), where x1 = 2 and y1 > 0.
Find the slope of the tangent and the normal to the following curve at the indicted point y = x3 − x at x = 2 ?
Find the slope of the tangent and the normal to the following curve at the indicted point x = a cos3 θ, y = a sin3 θ at θ = π/4 ?
Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?
Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?
Find the points on the curve 2a2y = x3 − 3ax2 where the tangent is parallel to x-axis ?
Find the points on the curve\[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the y-axis ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 at (0, 0) ?
Find the equation of the tangent and the normal to the following curve at the indicated point xy = c2 at \[\left( ct, \frac{c}{t} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at (x1, y1)?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?
Find the equation of the tangent line to the curve y = x2 + 4x − 16 which is parallel to the line 3x − y + 1 = 0 ?
Find the angle of intersection of the following curve x2 = 27y and y2 = 8x ?
Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?
The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .
If the curve ay + x2 = 7 and x3 = y cut orthogonally at (1, 1), then a is equal to _____________ .
The curves y = aex and y = be−x cut orthogonally, if ___________ .
The equation of the normal to the curve x = a cos3 θ, y = a sin3 θ at the point θ = π/4 is __________ .
Any tangent to the curve y = 2x7 + 3x + 5 __________________ .
Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.
The tangent to the curve given by x = et . cost, y = et . sint at t = `pi/4` makes with x-axis an angle ______.
The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.
Which of the following represent the slope of normal?
The normal at the point (1, 1) on the curve `2y + x^2` = 3 is
If the curves y2 = 6x, 9x2 + by2 = 16, cut each other at right angles then the value of b is ______.
The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.
If m be the slope of a tangent to the curve e2y = 1 + 4x2, then ______.
Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3