हिंदी

Find the Slope of the Tangent and the Normal to the Following Curve at the Indicted Point X = a (θ − Sin θ), Y = A(1 − Cos θ) at θ = −π/2 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = −π/2 ?

योग

उत्तर

\[x = a\left( \theta - \sin \theta \right)\]

\[ \Rightarrow \frac{dx}{d\theta} = a\left( 1 - \cos \theta \right)\]

\[ y = a\left( 1 + \cos \theta \right) \]

\[ \Rightarrow \frac{dy}{d\theta} = a\left( - \sin \theta \right)\]

\[ \therefore \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{a\left( - \sin \theta \right)}{a\left( 1 - \cos \theta \right)} = \frac{- 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \sin^2 \frac{\theta}{2}} = - \text { cot } \frac{\theta}{2}\]

\[\text { Now,} \]

\[\text { Slope of the tangent }= \left( \frac{dy}{dx} \right)_{\theta = \frac{- \pi}{2}} =-\text { cot }\left( \frac{\frac{- \pi}{2}}{2} \right)=-\text { cot }\left( \frac{- \pi}{4} \right)=1\]

\[\text { Slope of the normal }=\frac{- 1}{\left( \frac{dy}{dx} \right)_{\theta = \frac{- \pi}{2}}}=\frac{- 1}{1}=-1\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Tangents and Normals - Exercise 16.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 16 Tangents and Normals
Exercise 16.1 | Q 1.05 | पृष्ठ १०

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the equations of the tangent and normal to the curve `x^2/a^2−y^2/b^2=1` at the point `(sqrt2a,b)` .


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x2 at (0, 0)


Find the equation of the normals to the curve y = x3 + 2+ 6 which are parallel to the line x + 14y + 4 = 0.


The line y = x + 1 is a tangent to the curve y2 = 4x at the point

(A) (1, 2)

(B) (2, 1)

(C) (1, −2)

(D) (−1, 2)


Show that the normal at any point θ to the curve x = a cosθ + a θ sinθ, y = a sinθ – aθ cosθ is at a constant distance from the origin.


Find the slope of the tangent and the normal to the following curve at the indicted point  y = x3 − x at x = 2 ?


Find the points on the curve y = 3x2 − 9x + 8 at which the tangents are equally inclined with the axes ?


At what points on the curve y = 2x2 − x + 1 is the tangent parallel to the line y = 3x + 4?


Find the points on the curve x2 + y2 = 13, the tangent at each one of which is parallel to the line 2x + 3y = 7 ?


Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?


Find the equation of the normal to y = 2x3 − x2 + 3 at (1, 4) ?


Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?


Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y2 = 4ax at (x1, y1)?


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?


Find the equations of all lines of slope zero and that are tangent to the curve \[y = \frac{1}{x^2 - 2x + 3}\] ?


Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?


Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?


Show that the following curve intersect orthogonally at the indicated point y2 = 8x and 2x2 +  y2 = 10 at  \[\left( 1, 2\sqrt{2} \right)\] ?


Show that the curves 4x = y2 and 4xy = k cut at right angles, if k2 = 512 ?


If the tangent to a curve at a point (xy) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?


Write the equation of the normal to the curve y = x + sin x cos x at \[x = \frac{\pi}{2}\] ?


Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?


The equation of the normal to the curve y = x + sin x cos x at x = `π/2` is ___________ .


The equation of the normal to the curve y = x(2 − x) at the point (2, 0) is ________________ .


The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .


The angle of intersection of the curves xy = a2 and x2 − y2 = 2a2 is ______________ .


The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .


Find the equation of the tangent line to the curve `"y" = sqrt(5"x" -3) -5`, which is parallel to the line  `4"x" - 2"y" + 5 = 0`.


Find the condition for the curves `x^2/"a"^2 - y^2/"b"^2` = 1; xy = c2 to interest orthogonally.


Find the equation of all the tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π, that are parallel to the line x + 2y = 0.


Find an angle θ, 0 < θ < `pi/2`, which increases twice as fast as its sine.


Find the co-ordinates of the point on the curve `sqrt(x) + sqrt(y)` = 4 at which tangent is equally inclined to the axes


At what points on the curve x2 + y2 – 2x – 4y + 1 = 0, the tangents are parallel to the y-axis?


The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0


Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point


The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is


Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×