मराठी

Find the Slope of the Tangent and the Normal to the Following Curve at the Indicted Point X = a (θ − Sin θ), Y = A(1 − Cos θ) at θ = −π/2 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = −π/2 ?

बेरीज

उत्तर

\[x = a\left( \theta - \sin \theta \right)\]

\[ \Rightarrow \frac{dx}{d\theta} = a\left( 1 - \cos \theta \right)\]

\[ y = a\left( 1 + \cos \theta \right) \]

\[ \Rightarrow \frac{dy}{d\theta} = a\left( - \sin \theta \right)\]

\[ \therefore \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{a\left( - \sin \theta \right)}{a\left( 1 - \cos \theta \right)} = \frac{- 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \sin^2 \frac{\theta}{2}} = - \text { cot } \frac{\theta}{2}\]

\[\text { Now,} \]

\[\text { Slope of the tangent }= \left( \frac{dy}{dx} \right)_{\theta = \frac{- \pi}{2}} =-\text { cot }\left( \frac{\frac{- \pi}{2}}{2} \right)=-\text { cot }\left( \frac{- \pi}{4} \right)=1\]

\[\text { Slope of the normal }=\frac{- 1}{\left( \frac{dy}{dx} \right)_{\theta = \frac{- \pi}{2}}}=\frac{- 1}{1}=-1\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Tangents and Normals - Exercise 16.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 16 Tangents and Normals
Exercise 16.1 | Q 1.05 | पृष्ठ १०

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.


Find the slope of the tangent to curve y = x3 − + 1 at the point whose x-coordinate is 2.


Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.


Show that the normal at any point θ to the curve x = a cosθ + a θ sinθ, y = a sinθ – aθ cosθ is at a constant distance from the origin.


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?


At what point of the curve y = x2 does the tangent make an angle of 45° with the x-axis?


At what points on the curve y = 2x2 − x + 1 is the tangent parallel to the line y = 3x + 4?


 Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1? 


Find the equation of the tangent and the normal to the following curve at the indicated point  y = x2 at (0, 0) ?


Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = a(θ + sinθ), y = a(1 − cosθ) at θ ?


Find the equation of the normal to the curve ay2 = x3 at the point (am2, am3) ?


Determine the equation(s) of tangent (s) line to the curve y = 4x3 − 3x + 5 which are perpendicular to the line 9y + x + 3 = 0 ?


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which perpendicular to the line 5y − 15x = 13. ?


Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x?


Show that the following curve intersect orthogonally at the indicated point x2 = 4y and 4y + x2 = 8 at (2, 1) ?


Show that the following curve intersect orthogonally at the indicated point y2 = 8x and 2x2 +  y2 = 10 at  \[\left( 1, 2\sqrt{2} \right)\] ?


If the straight line xcos \[\alpha\] +y sin \[\alpha\] = p touches the curve  \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\] then prove that a2cos2 \[\alpha\] \[-\] b2sin\[\alpha\] = p?


Write the angle made by the tangent to the curve x = et cos t, y = et sin t at \[t = \frac{\pi}{4}\] with the x-axis ?


Write the slope of the normal to the curve \[y = \frac{1}{x}\]  at the point \[\left( 3, \frac{1}{3} \right)\] ?


The equation to the normal to the curve y = sin x at (0, 0) is ___________ .


The equation of the normal to the curve y = x + sin x cos x at x = `π/2` is ___________ .


The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .


The normal at the point (1, 1) on the curve 2y + x2 = 3 is _____________ .


 Find the equation of tangent to the curve y = x2 +4x + 1 at (-1 , -2).


Find the equation of all the tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π, that are parallel to the line x + 2y = 0.


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.


Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y


The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.


The equation of normal to the curve y = tanx at (0, 0) is ______.


At (0, 0) the curve y = x3 + x


The point on the curves y = (x – 3)2 where the tangent is parallel to the chord joining (3, 0) and (4, 1) is ____________.


The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.


The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0


Find a point on the curve y = (x – 2)2. at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).


If `tan^-1x + tan^-1y + tan^-1z = pi/2`, then


Tangent and normal are drawn at P(16, 16) on the parabola y2 = 16x, which intersect the axis of the parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and ∠CPB = θ, then a value of tan θ is:


Let `y = f(x)` be the equation of the curve, then equation of normal is


Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×