Advertisements
Advertisements
प्रश्न
Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x2 ?
उत्तर
\[ y = x^3 . . . \left( 1 \right)\]
\[6y = 7 - x^2 . . . \left( 2 \right)\]
\[\text { From (1) and (2) we get }\]
\[6 x^3 = 7 - x^2 \]
\[ \Rightarrow 6 x^3 + x^2 - 7 = 0\]
\[x=1 \text { satisfies this }.\]
\[\text { Dividing this byx-1 ,we get }\]
\[6 x^2 + 7x + 7 = 0, \]
\[ {\text { Discriminant } = 7}^2 -4\left( 6 \right)\left( 7 \right)=-119<0\]
\[\text { So, this has no real roots }.\]
\[\text { When} x=1,y= x^3 =1 (\text { From }(1))\]
\[\text { So,} \left( x, y \right)=\left( 1, 1 \right)\]
\[\text { Differentiating (1) w.r.t.x, }\]
\[\frac{dy}{dx} = 3 x^2 \]
\[ \Rightarrow m_1 = \left( \frac{dy}{dx} \right)_\left( 1, 1 \right) = 3\]
\[\text { Differenntiating (2) w.r.t.x, }\]
\[6\frac{dx}{dx} = - 2x\]
\[ \Rightarrow \frac{dx}{dx} = \frac{- 2x}{6} = \frac{- x}{3}\]
\[ \Rightarrow m_2 = \left( \frac{dy}{dx} \right)_\left( 1, 1 \right) = \frac{- 1}{3}\]
\[\text { Now,} m_1 \times m_2 = 3 \times \frac{- 1}{3}\]
\[ \Rightarrow m_1 \times m_2 = - 1\]
\[\text { Since }, m_1 \times m_2 = - 1\]
So, the given curves intersect orthogonally.
APPEARS IN
संबंधित प्रश्न
Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.
Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.
The equation of tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x – 5. Find the values of a and b.
Find the equation of tangents to the curve y= x3 + 2x – 4, which are perpendicular to line x + 14y + 3 = 0.
Find the equation of the tangent to the curve `y = sqrt(3x-2)` which is parallel to the line 4x − 2y + 5 = 0.
Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x^3} \text { at } x = 4\] ?
Find the slope of the tangent and the normal to the following curve at the indicted point x2 + 3y + y2 = 5 at (1, 1) ?
Find the points on the curve y = x3 where the slope of the tangent is equal to the x-coordinate of the point ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[y^2 = \frac{x^3}{4 - x}at \left( 2, - 2 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points \[x = \frac{2 a t^2}{1 + t^2}, y = \frac{2 a t^3}{1 + t^2}\text { at } t = \frac{1}{2}\] ?
Determine the equation(s) of tangent (s) line to the curve y = 4x3 − 3x + 5 which are perpendicular to the line 9y + x + 3 = 0 ?
Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?
Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?
Find the slope of the normal at the point 't' on the curve \[x = \frac{1}{t}, y = t\] ?
Write the coordinates of the point on the curve y2 = x where the tangent line makes an angle \[\frac{\pi}{4}\] with x-axis ?
Write the angle between the curves y = e−x and y = ex at their point of intersections ?
Write the slope of the normal to the curve \[y = \frac{1}{x}\] at the point \[\left( 3, \frac{1}{3} \right)\] ?
Write the equation of the normal to the curve y = cos x at (0, 1) ?
The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .
The angle of intersection of the curves xy = a2 and x2 − y2 = 2a2 is ______________ .
If the line y = x touches the curve y = x2 + bx + c at a point (1, 1) then _____________ .
Any tangent to the curve y = 2x7 + 3x + 5 __________________ .
The slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at the point (2, −1) is _____________ .
Find the condition for the curves `x^2/"a"^2 - y^2/"b"^2` = 1; xy = c2 to interest orthogonally.
Find the equation of all the tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π, that are parallel to the line x + 2y = 0.
Find an angle θ, 0 < θ < `pi/2`, which increases twice as fast as its sine.
Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are parallel to the line x + 3y = 4.
At what points on the curve x2 + y2 – 2x – 4y + 1 = 0, the tangents are parallel to the y-axis?
Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y
The curve y = `x^(1/5)` has at (0, 0) ______.
The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.
The tangent to the curve y = 2x2 - x + 1 is parallel to the line y = 3x + 9 at the point ____________.
If `tan^-1x + tan^-1y + tan^-1z = pi/2`, then
Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point
If the tangent to the curve y = x + siny at a point (a, b) is parallel to the line joining `(0, 3/2)` and `(1/2, 2)`, then ______.