Advertisements
Advertisements
प्रश्न
The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.
पर्याय
(2, –2), (–2, –34)
(2, 34), (–2, 0)
(0, 34), (–2, 0)
(2, 2), (–2, 34)
उत्तर
The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are (2, 2), (–2, 34).
Explanation:
Given that y = x3 – 12x + 18
Differentiating both sides w.r.t. x, we have
⇒ `"dy"/"dx"` = 3x2 – 12
Since the tangents are parallel to x-axis, then `"dy"/"dx"` = 0
∴ 3x2 – 12 = 0
⇒ x = ± 2
∴ `y_(x = 2)` = (2)3 – 12(2) + 18
= 8 – 24 + 18
= 2
`y_(x = -2)` = (– 2)3 – 12 (– 2) + 18
= – 8 + 24 + 18
= 34
∴ Points are (2, 2) and (– 2, 34).
APPEARS IN
संबंधित प्रश्न
Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is `6sqrt3` r.
Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.
Find the point on the curve y = x3 − 11x + 5 at which the tangent is y = x − 11.
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x3 at (1, 1)
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is perpendicular to the line 5y − 15x = 13.
Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).
Show that the normal at any point θ to the curve x = a cosθ + a θ sinθ, y = a sinθ – aθ cosθ is at a constant distance from the origin.
Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x^3} \text { at } x = 4\] ?
Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is parallel to y-axis ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( a\sec\theta, b\tan\theta \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?
Find the equation of the tangent to the curve x = sin 3t, y = cos 2t at
\[t = \frac{\pi}{4}\] ?
Find the angle of intersection of the following curve x2 + y2 − 4x − 1 = 0 and x2 + y2 − 2y − 9 = 0 ?
Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?
Show that the following set of curve intersect orthogonally x3 − 3xy2 = −2 and 3x2y − y3 = 2 ?
Find the slope of the normal at the point 't' on the curve \[x = \frac{1}{t}, y = t\] ?
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .
If the line y = x touches the curve y = x2 + bx + c at a point (1, 1) then _____________ .
The point on the curve y = 6x − x2 at which the tangent to the curve is inclined at π/4 to the line x + y= 0 is __________ .
Find the angle of intersection of the curves \[y^2 = 4ax \text { and } x^2 = 4by\] .
Find the equation of all the tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π, that are parallel to the line x + 2y = 0.
If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is ______.
The tangent to the curve y = e2x at the point (0, 1) meets x-axis at ______.
The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 – 2 = 0 intersect at an angle of ______.
The equation of normal to the curve y = tanx at (0, 0) is ______.
`"sin"^"p" theta "cos"^"q" theta` attains a maximum, when `theta` = ____________.
The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0
The line is y = x + 1 is a tangent to the curve y2 = 4x at the point.
For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.