Advertisements
Advertisements
प्रश्न
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is `6sqrt3` r.
उत्तर
Let ABC is an isosceles triangle with AB=AC=x and a circle with centre O and radius r is inscribed in the triangle. O,A and O,E and O,D are joined.From ΔABF,
`AF^2+BF^2=AB^2`
`⇒(3r)^2+(y2)^2=x^2 .....(1)`
Again,From ΔADO,`(2r)^2=r^2+AD^2`
`⇒3r^2=AD^2`
`⇒AD=sqrt3r`
Now, BD=BF and EC=FC (Since tangents drawn from an external point are equal) Now, AD+DB=x
`⇒(sqrt3r)+(y^2)=x`
`⇒y^2=x−sqrt3 .....(2)`
`∴(3r)^2+(x−sqrt3r)^2=x^2`
`⇒9r^2+x^2−2sqrt3rx+3r^2=x^2`
`⇒12r^2=2sqrt3rx`
`⇒6r=sqrt3x`
`⇒x=6r/sqrt3`
Now, From (2),
`y/2=6/sqrt3r−sqrt3r`
`⇒y/2=6/sqrt3r−sqrt3r`
`⇒y/2=((6sqrt3−3sqrt3)r)/3`
`⇒y/2=(3sqrt3r)/3`
`⇒y=2sqrt3r`
Perimeter=2x+y
`=2(6/sqrt3r)+2sqrt3r`
`=12/sqrt3r+2sqrt3r`
`=(12r+6r)/sqrt3`
`=18/sqrt3r`
`=(18xxsqrt3)/(sqrt3xxsqrt3)r`
`=6sqrt3r`
APPEARS IN
संबंधित प्रश्न
Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.
Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t
Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.
Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x^3} \text { at } x = 4\] ?
At what point of the curve y = x2 does the tangent make an angle of 45° with the x-axis?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1?
Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points:
x = 3cosθ − cos3θ, y = 3sinθ − sin3θ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = asect, y = btant at t ?
Find the angle of intersection of the following curve x2 + y2 − 4x − 1 = 0 and x2 + y2 − 2y − 9 = 0 ?
Find the angle of intersection of the following curve x2 = 27y and y2 = 8x ?
Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?
Prove that the curves y2 = 4x and x2 + y2 - 6x + 1 = 0 touch each other at the point (1, 2) ?
If the tangent to a curve at a point (x, y) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?
Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .
The curves y = aex and y = be−x cut orthogonally, if ___________ .
The equation of the normal to the curve x = a cos3 θ, y = a sin3 θ at the point θ = π/4 is __________ .
The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .
Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis
Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.
Show that the equation of normal at any point on the curve x = 3cos θ – cos3θ, y = 3sinθ – sin3θ is 4 (y cos3θ – x sin3θ) = 3 sin 4θ
The equation of tangent to the curve y(1 + x2) = 2 – x, where it crosses x-axis is ______.
The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0
The tangent to the curve y = 2x2 - x + 1 is parallel to the line y = 3x + 9 at the point ____________.
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3