मराठी

Prove that the Least Perimeter of an Isosceles Triangle in Which a Circle of Radius R Can Be Inscribed is - Mathematics

Advertisements
Advertisements

प्रश्न

 

Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is `6sqrt3` r.

 

उत्तर

Let ABC is an isosceles triangle with AB=AC=x and a circle with centre O and radius r is inscribed in the triangle. O,A and O,E and O,D are joined.From ΔABF,

`AF^2+BF^2=AB^2`

`⇒(3r)^2+(y2)^2=x^2      .....(1)`

Again,From ΔADO,`(2r)^2=r^2+AD^2`

`⇒3r^2=AD^2`

`⇒AD=sqrt3r`

Now, BD=BF and EC=FC (Since tangents drawn from an external point are equalNow, AD+DB=x

`⇒(sqrt3r)+(y^2)=x`

`⇒y^2=x−sqrt3     .....(2)`

`∴(3r)^2+(x−sqrt3r)^2=x^2`

`⇒9r^2+x^2−2sqrt3rx+3r^2=x^2`

`⇒12r^2=2sqrt3rx`

`⇒6r=sqrt3x`

`⇒x=6r/sqrt3`

Now, From (2),

`y/2=6/sqrt3r−sqrt3r`

`⇒y/2=6/sqrt3r−sqrt3r`

`⇒y/2=((6sqrt3−3sqrt3)r)/3`

`⇒y/2=(3sqrt3r)/3`

`⇒y=2sqrt3r`

Perimeter=2x+y

`=2(6/sqrt3r)+2sqrt3r`

`=12/sqrt3r+2sqrt3r`

`=(12r+6r)/sqrt3`

`=18/sqrt3r`

`=(18xxsqrt3)/(sqrt3xxsqrt3)r`

`=6sqrt3r`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2015-2016 (March) All India Set 2 C

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t


Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.


Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x^3} \text { at } x = 4\] ?


At what point of the curve y = x2 does the tangent make an angle of 45° with the x-axis?


 Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1? 


Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?


Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points:

x = 3cosθ − cos3θ, y = 3sinθ − sin3θ? 


Find the equation of the tangent and the normal to the following curve at the indicated points  x = asect, y = btant at t ?


Find the angle of intersection of the following curve x2 + y2 − 4x − 1 = 0 and x2 + y2 − 2y − 9 = 0 ?


Find the angle of intersection of the following curve  x2 = 27y and y2 = 8x ?


Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?


Prove that the curves y2 = 4x and x2 + y2 - 6x + 1 = 0 touch each other at the point (1, 2) ?


If the tangent to a curve at a point (xy) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?


Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .


The curves y = aex and y = be−x cut orthogonally, if ___________ .


The equation of the normal to the curve x = a cos3 θ, y = a sin3 θ at the point θ = π/4 is __________ .


The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .


Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis


Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.


Show that the equation of normal at any point on the curve x = 3cos θ – cos3θ, y = 3sinθ – sin3θ is 4 (y cos3θ – x sin3θ) = 3 sin 4θ


The equation of tangent to the curve y(1 + x2) = 2 – x, where it crosses x-axis is ______.


The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0


The tangent to the curve y = 2x2 - x + 1 is parallel to the line y = 3x + 9 at the point ____________.


The line y = x + 1 is a tangent to the curve y2 = 4x at the point


Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×