मराठी

Find the Angle of Intersection of the Following Curve X2 = 27y and Y2 = 8x ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the angle of intersection of the following curve  x2 = 27y and y2 = 8x ?

बेरीज

उत्तर

\[\text {  Given curves are },\]

\[ x^2 = 27y . . . \left( 1 \right)\]

\[ y^2 = 8x . . . \left( 2 \right)\]

\[\text { From } (2) \text { we get }\]

\[x = \frac{y^2}{8} \]

\[\text { Substituting this in  }(1),\]

\[ \left( \frac{y^2}{8} \right)^2 = 27y\]

\[ \Rightarrow y^4 = 1728y\]

\[ \Rightarrow y \left( y^3 - {12}^3 \right) = 0\]

\[ \Rightarrow y = 0 ory = 12\]

\[\text { Substituting the values of y in (2), we get }, \]

\[ \Rightarrow x = 0 orx = 18\]

\[ \Rightarrow \left( x, y \right)=\left( 0, 0 \right),\left( 18, 12 \right)\]

\[\text { Differentiating (1) w.r.t.x },\]

\[2x = 27\frac{dy}{dx}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{2x}{27} . . . \left( 3 \right)\]

\[\text { Differentiating (2) w.r.t.x },\]

\[2y \frac{dy}{dx} = 8\]

\[ \Rightarrow \frac{dy}{dx} = \frac{4}{y} . . . \left( 4 \right)\]

\[\text { Case } - 1:\left( x, y \right)=\left( 0, 0 \right)\]

\[\text { From  }\left( 4 \right) \text { we have,} m_2 \text { is undefined }\]

\[ \therefore\text { We cannot find } \theta\]

\[\text { Case -} 2: \left( x, y \right)=\left( 18, 12 \right)\]

\[\text { From } \left( 3 \right) \text { we have }, m_1 = \frac{36}{27} = \frac{4}{3}\]

\[\text { From } \left( 4 \right) \text { we have }, m_2 = \frac{4}{12} = \frac{1}{3}\]

\[\text { Now }, \]

\[\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{\frac{4}{3} - \frac{1}{3}}{1 + \frac{4}{9}} \right| = \frac{9}{13}\]

\[ \Rightarrow \theta = \tan^{- 1} \left( \frac{9}{13} \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Tangents and Normals - Exercise 16.3 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 16 Tangents and Normals
Exercise 16.3 | Q 1.7 | पृष्ठ ४०

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the slope of the tangent to curve y = x3 − + 1 at the point whose x-coordinate is 2.


Find the slope of the normal to the curve x = acos3θy = asin3θ at `theta = pi/4`


Find the point on the curve y = x3 − 11x + 5 at which the tangent is y = x − 11.

 

Find the equations of all lines having slope 0 which are tangent to the curve  y =   `1/(x^2-2x + 3)`


The slope of the normal to the curve y = 2x2 + 3 sin x at x = 0 is

(A) 3

(B) 1/3

(C) −3

(D) `-1/3`


Find the equation of the normal to curve y2 = 4x at the point (1, 2).


Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = −π/2 ?


Find a point on the curve y = x3 − 3x where the tangent is parallel to the chord joining (1, −2) and (2, 2) ?


Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?


Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3  ?


Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?    


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?


The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?


Find the equation of the tangent line to the curve y = x2 + 4x − 16 which is parallel to the line 3x − y + 1 = 0 ?


Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?


Find the angle of intersection of the following curve y2 = x and x2 = y  ?


Find the angle of intersection of the following curve  x2 + 4y2 = 8 and x2 − 2y2 = 2 ?


Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?


Find the slope of the normal at the point 't' on the curve \[x = \frac{1}{t}, y = t\] ?


The curves y = aex and y = be−x cut orthogonally, if ___________ .


If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .


The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is

(a) \[\left( 4, \frac{8}{3} \right)\]

(b) \[\left( - 4, \frac{8}{3} \right)\]

(c) \[\left( 4, - \frac{8}{3} \right)\]

(d) none of these

 


Find the condition for the curves `x^2/"a"^2 - y^2/"b"^2` = 1; xy = c2 to interest orthogonally.


At what points on the curve x2 + y2 – 2x – 4y + 1 = 0, the tangents are parallel to the y-axis?


Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y


The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.


At (0, 0) the curve y = x3 + x


The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:


`"sin"^"p" theta  "cos"^"q" theta` attains a maximum, when `theta` = ____________.


The point on the curves y = (x – 3)2 where the tangent is parallel to the chord joining (3, 0) and (4, 1) is ____________.


The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0


The tangent to the curve y = x2 + 3x will pass through the point (0, -9) if it is drawn at the point ____________.


Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.


Tangent is drawn to the ellipse `x^2/27 + y^2 = 1` at the point `(3sqrt(3) cos theta, sin theta), 0 < 0 < 1`. The sum of the intercepts on the axes made by the tangent is minimum if 0 is equal to


The number of common tangents to the circles x2 + y2 – 4x – 6x – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is


The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is


If the tangent to the curve y = x + siny at a point (a, b) is parallel to the line joining `(0, 3/2)` and `(1/2, 2)`, then ______.


If the curves y2 = 6x, 9x2 + by2 = 16, cut each other at right angles then the value of b is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×