Advertisements
Advertisements
प्रश्न
Find the angle of intersection of the following curve x2 = 27y and y2 = 8x ?
उत्तर
\[\text { Given curves are },\]
\[ x^2 = 27y . . . \left( 1 \right)\]
\[ y^2 = 8x . . . \left( 2 \right)\]
\[\text { From } (2) \text { we get }\]
\[x = \frac{y^2}{8} \]
\[\text { Substituting this in }(1),\]
\[ \left( \frac{y^2}{8} \right)^2 = 27y\]
\[ \Rightarrow y^4 = 1728y\]
\[ \Rightarrow y \left( y^3 - {12}^3 \right) = 0\]
\[ \Rightarrow y = 0 ory = 12\]
\[\text { Substituting the values of y in (2), we get }, \]
\[ \Rightarrow x = 0 orx = 18\]
\[ \Rightarrow \left( x, y \right)=\left( 0, 0 \right),\left( 18, 12 \right)\]
\[\text { Differentiating (1) w.r.t.x },\]
\[2x = 27\frac{dy}{dx}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2x}{27} . . . \left( 3 \right)\]
\[\text { Differentiating (2) w.r.t.x },\]
\[2y \frac{dy}{dx} = 8\]
\[ \Rightarrow \frac{dy}{dx} = \frac{4}{y} . . . \left( 4 \right)\]
\[\text { Case } - 1:\left( x, y \right)=\left( 0, 0 \right)\]
\[\text { From }\left( 4 \right) \text { we have,} m_2 \text { is undefined }\]
\[ \therefore\text { We cannot find } \theta\]
\[\text { Case -} 2: \left( x, y \right)=\left( 18, 12 \right)\]
\[\text { From } \left( 3 \right) \text { we have }, m_1 = \frac{36}{27} = \frac{4}{3}\]
\[\text { From } \left( 4 \right) \text { we have }, m_2 = \frac{4}{12} = \frac{1}{3}\]
\[\text { Now }, \]
\[\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{\frac{4}{3} - \frac{1}{3}}{1 + \frac{4}{9}} \right| = \frac{9}{13}\]
\[ \Rightarrow \theta = \tan^{- 1} \left( \frac{9}{13} \right)\]
APPEARS IN
संबंधित प्रश्न
Find the slope of the tangent to curve y = x3 − x + 1 at the point whose x-coordinate is 2.
Find the slope of the normal to the curve x = acos3θ, y = asin3θ at `theta = pi/4`
Find the point on the curve y = x3 − 11x + 5 at which the tangent is y = x − 11.
Find the equations of all lines having slope 0 which are tangent to the curve y = `1/(x^2-2x + 3)`
The slope of the normal to the curve y = 2x2 + 3 sin x at x = 0 is
(A) 3
(B) 1/3
(C) −3
(D) `-1/3`
Find the equation of the normal to curve y2 = 4x at the point (1, 2).
Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = −π/2 ?
Find a point on the curve y = x3 − 3x where the tangent is parallel to the chord joining (1, −2) and (2, 2) ?
Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3 ?
Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?
The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?
Find the equation of the tangent line to the curve y = x2 + 4x − 16 which is parallel to the line 3x − y + 1 = 0 ?
Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?
Find the angle of intersection of the following curve y2 = x and x2 = y ?
Find the angle of intersection of the following curve x2 + 4y2 = 8 and x2 − 2y2 = 2 ?
Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?
Find the slope of the normal at the point 't' on the curve \[x = \frac{1}{t}, y = t\] ?
The curves y = aex and y = be−x cut orthogonally, if ___________ .
If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .
The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is
(a) \[\left( 4, \frac{8}{3} \right)\]
(b) \[\left( - 4, \frac{8}{3} \right)\]
(c) \[\left( 4, - \frac{8}{3} \right)\]
(d) none of these
Find the condition for the curves `x^2/"a"^2 - y^2/"b"^2` = 1; xy = c2 to interest orthogonally.
At what points on the curve x2 + y2 – 2x – 4y + 1 = 0, the tangents are parallel to the y-axis?
Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y
The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.
At (0, 0) the curve y = x3 + x
The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:
`"sin"^"p" theta "cos"^"q" theta` attains a maximum, when `theta` = ____________.
The point on the curves y = (x – 3)2 where the tangent is parallel to the chord joining (3, 0) and (4, 1) is ____________.
The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0
The tangent to the curve y = x2 + 3x will pass through the point (0, -9) if it is drawn at the point ____________.
Tangents to the curve x2 + y2 = 2 at the points (1, 1) and (-1, 1) are ____________.
Tangent is drawn to the ellipse `x^2/27 + y^2 = 1` at the point `(3sqrt(3) cos theta, sin theta), 0 < 0 < 1`. The sum of the intercepts on the axes made by the tangent is minimum if 0 is equal to
The number of common tangents to the circles x2 + y2 – 4x – 6x – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is
The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is
If the tangent to the curve y = x + siny at a point (a, b) is parallel to the line joining `(0, 3/2)` and `(1/2, 2)`, then ______.
If the curves y2 = 6x, 9x2 + by2 = 16, cut each other at right angles then the value of b is ______.