मराठी

The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.

पर्याय

  • `22/7`

  • `6/7`

  • `(-6)/7`

  • – 6

MCQ
रिकाम्या जागा भरा

उत्तर

The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is `6/7`.

Explanation:

The given curve is x = t2 + 3t – 8 and y = 2t2 – 2t – 5

`"dx"/"dt"` = 2t + 3 and `"dy"/"dt"` = 4t – 2

∴ `"dy"/"dx" = ("dy"/"dt")/("dx"/"dt")`

= `(4"t" - 2)/(2"t" + 3)`

Now (2, – 1) lies on the curve

∴ 2 = t2 + 3t – 8

⇒ t2 + 3t – 10 = 0

⇒ t2 + 5t –2t – 10 = 0

⇒ t(t + 5) – 2(t + 5) = 0

⇒ (t + 5)(t – 2) = 0

∴ t = 2, t = – 5 and – 1 = 2t2 – 2t – 5

⇒ 2t2 – 2t – 4 = 0

⇒ t2 – t – 2 = 0

⇒ t2 – 2t + t – 2 = 0

⇒ t(t – 2) + 1(t – 2) = 0

⇒ (t + 1)(t – 2) = 0

⇒ t = – 1 and t = 2

So t = 2 is common value

∴ Slope `"dy"/("dx"_(x = 2)) = (4 xx 2 - 2)/(2 xx 2 + 3) = 6/7`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Application Of Derivatives - Exercise [पृष्ठ १३९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 6 Application Of Derivatives
Exercise | Q 44 | पृष्ठ १३९

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


Find the equations of the tangent and normal to the curve `x^2/a^2−y^2/b^2=1` at the point `(sqrt2a,b)` .


Show that the tangents to the curve y = 7x3 + 11 at the points where x = 2 and x = −2 are parallel.


Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x} \text { at }x = 9\] ?


Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = −π/2 ?


Find the point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slop is \[- \frac{1}{6}\]  ?


Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?


Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?    


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = a(θ + sinθ), y = a(1 − cosθ) at θ ?


Find the equation of the tangent and the normal to the following curve at the indicated points  x = asect, y = btant at t ?


Find the angle of intersection of the following curve y2 = x and x2 = y  ?


Find the angle of intersection of the following curve  x2 = 27y and y2 = 8x ?


Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?


If the straight line xcos \[\alpha\] +y sin \[\alpha\] = p touches the curve  \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\] then prove that a2cos2 \[\alpha\] \[-\] b2sin\[\alpha\] = p?


Write the equation on the tangent to the curve y = x2 − x + 2 at the point where it crosses the y-axis ?


The equation to the normal to the curve y = sin x at (0, 0) is ___________ .


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .


The curves y = aex and y = be−x cut orthogonally, if ___________ .


If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .


The normal to the curve x2 = 4y passing through (1, 2) is _____________ .


 Find the equation of tangent to the curve y = x2 +4x + 1 at (-1 , -2).


Show that the equation of normal at any point on the curve x = 3cos θ – cos3θ, y = 3sinθ – sin3θ is 4 (y cos3θ – x sin3θ) = 3 sin 4θ


Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)


Tangent is drawn to the ellipse `x^2/27 + y^2 = 1` at the point `(3sqrt(3) cos theta, sin theta), 0 < 0 < 1`. The sum of the intercepts on the axes made by the tangent is minimum if 0 is equal to


The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are


The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.


Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×