Advertisements
Advertisements
प्रश्न
Find the equation of the tangent and the normal to the following curve at the indicated points x = asect, y = btant at t ?
उत्तर
\[x = a \sec t \text{ and }y = b \tan t\]
\[\frac{dx}{dt} = a \sec t \tan t \text { and } \frac{dy}{dt} = b \sec^2 t\]
\[ \therefore \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{b \sec^2 t}{a \sec t \tan t} = \frac{b}{a}\ cosec\ t\]
\[\text { Slope of tangent, }m= \left( \frac{dy}{dx} \right)_{t = t} =\frac{b}{a}\ cosec\ t\]
\[\text { Now, }\left( x_1 , y_1 \right) = \left( a \sec t, b \tan t \right)\]
\[\text { Equation of tangent is },\]
\[y - y_1 = m \left( x - x_1 \right)\]
\[ \Rightarrow y - b \tan t = \frac{b}{a}\ cosec \ t\left( x - a sec t \right)\]
\[ \Rightarrow y - \frac{b \sin t}{\cos t} = \frac{b}{a \sin t}\left( x - \frac{a}{\cos t} \right)\]
\[ \Rightarrow \frac{y \cos t - b \sin t}{\cos t} = \frac{b}{a \sin t}\left( \frac{x \cos t - a}{\cos t} \right)\]
\[ \Rightarrow y \cos t - b \sin t = \frac{b}{a \sin t}\left( x \cos t - a \right)\]
\[ \Rightarrow ay \sin t \cos t - ab \sin^2 t = bx \cos t - ab\]
\[ \Rightarrow bx \cos t - ay \sin t \cos t - ab\left( 1 - \sin^2 t \right) = 0\]
\[ \Rightarrow bx \cos t - ay \sin t \cos t = ab \cos^2 t\]
\[\text { Dividing by } \cos^2 t,\]
\[bx \sec t - ay \tan t = ab\]
\[\text { Equation of normal is,}\]
\[y - y_1 = m \left( x - x_1 \right)\]
\[ \Rightarrow y - b \tan t = \frac{- a}{b}\sin t\left( x - a \sec t \right)\]
\[ \Rightarrow y - b \frac{\sin t}{\cos t} = \frac{- a}{b}\sin t\left( x - \frac{a}{\cos t} \right)\]
\[ \Rightarrow \frac{y \cos t - b \sin t}{\cos t} = \frac{- a}{b}\sin t\left( \frac{x \cos t - a}{\cos t} \right)\]
\[ \Rightarrow y \cos t - b \sin t = \frac{- a}{b} \sin t\left( x \cos t - a \right)\]
\[ \Rightarrow by \cos t - b^2 \sin t = - ax \sin t \cos t + a^2 \sin t\]
\[ \Rightarrow ax \sin t \cos t + by \cos t = \left( a^2 + b^2 \right)\sin t\]
\[\text { Dividing both sides by sint },\]
\[ax \cos t + by \cot t = a^2 + b^2\]
APPEARS IN
संबंधित प्रश्न
Find the equations of the tangent and normal to the curve x = a sin3θ and y = a cos3θ at θ=π/4.
Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t
Find the slope of the tangent to curve y = x3 − x + 1 at the point whose x-coordinate is 2.
Find the equation of all lines having slope −1 that are tangents to the curve `y = 1/(x -1), x != 1`
The line y = mx + 1 is a tangent to the curve y2 = 4x if the value of m is
(A) 1
(B) 2
(C) 3
(D) 1/2
Find the slope of the tangent and the normal to the following curve at the indicted point x = a cos3 θ, y = a sin3 θ at θ = π/4 ?
Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?
Find a point on the curve y = x3 − 3x where the tangent is parallel to the chord joining (1, −2) and (2, 2) ?
Find the point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slop is \[- \frac{1}{6}\] ?
Find the equation of the normal to y = 2x3 − x2 + 3 at (1, 4) ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − bx3 + 13x2 − 10x + 5 at (0, 5) ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 at (0, 0) ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[y^2 = \frac{x^3}{4 - x}at \left( 2, - 2 \right)\] ?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which perpendicular to the line 5y − 15x = 13. ?
Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?
At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?
Find the angle of intersection of the following curve 2y2 = x3 and y2 = 32x ?
Find the angle of intersection of the following curve x2 + y2 − 4x − 1 = 0 and x2 + y2 − 2y − 9 = 0 ?
Find the angle of intersection of the following curve x2 = 27y and y2 = 8x ?
Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x2 ?
Write the coordinates of the point at which the tangent to the curve y = 2x2 − x + 1 is parallel to the line y = 3x + 9 ?
Write the equation of the normal to the curve y = cos x at (0, 1) ?
The slope of the tangent to the curve x = t2 + 3 t − 8, y = 2t2 − 2t − 5 at point (2, −1) is ________________ .
The slope of the tangent to the curve x = 3t2 + 1, y = t3 −1 at x = 1 is ___________ .
Find the equation of the tangent line to the curve `"y" = sqrt(5"x" -3) -5`, which is parallel to the line `4"x" - 2"y" + 5 = 0`.
Find the equation of tangent to the curve `y = sqrt(3x -2)` which is parallel to the line 4x − 2y + 5 = 0. Also, write the equation of normal to the curve at the point of contact.
Find the angle of intersection of the curves y2 = x and x2 = y.
The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.
The tangent to the curve y = x2 + 3x will pass through the point (0, -9) if it is drawn at the point ____________.
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
Let `y = f(x)` be the equation of the curve, then equation of normal is
The normal at the point (1, 1) on the curve `2y + x^2` = 3 is
An edge of variable cube is increasing at the rate of 3 cm/s. The volume of the cube increasing fast when the edge is 10 cm long is ______ cm3/s.
Two vertical poles of heights, 20 m and 80 m stand apart on a horizontal plane. The height (in meters) of the point of intersection of the lines joining the top of each pole to the foot of the other, From this horizontal plane is ______.
The curve `(x/a)^n + (y/b)^n` = 2, touches the line `x/a + y/b` = 2 at the point (a, b) for n is equal to ______.
Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3