मराठी

The Slope of the Tangent to the Curve X = 3t2 + 1, Y = T3 −1 at X = 1 is - Mathematics

Advertisements
Advertisements

प्रश्न

The slope of the tangent to the curve x = 3t2 + 1, y = t3 −1 at x = 1 is ___________ .

पर्याय

  • 1/2

  • 0

  • `-2`

MCQ

उत्तर

`0`

 

\[\text {Given }: \]

\[x = 3 t^2 + 1 \]

\[y = t^3 - 1\]

\[x = 1\]

\[\text { Now }, \]

\[3 t^2 + 1 = 1\]

\[ \Rightarrow 3 t^2 = 0\]

\[ \Rightarrow t = 0\]

\[\frac{dx}{dt} = 6t \text { and } \frac{dy}{dt} = 3 t^2 \]

\[ \therefore \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{3 t^2}{6t} = \frac{t}{2}\]

\[\text { Thus, we get }\]

\[\text { Slope of the tangent }= \left( \frac{dy}{dx} \right)_{t = 0} =\frac{0}{2}=0\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Tangents and Normals - Exercise 16.5 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 16 Tangents and Normals
Exercise 16.5 | Q 17 | पृष्ठ ४३

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the equation of tangents to the curve y= x3 + 2x – 4, which are perpendicular to line x + 14y + 3 = 0.


Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.


Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.


Find the slope of the tangent to the curve y = x3 − 3x + 2 at the point whose x-coordinate is 3.


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x3 at (1, 1)


Find the points on the curve y = x3 at which the slope of the tangent is equal to the y-coordinate of the point.


If the tangent to the curve y = x3 + ax + b at (1, − 6) is parallel to the line x − y + 5 = 0, find a and b ?


Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?


Find the equation of the tangent to the curve \[\sqrt{x} + \sqrt{y} = a\] at the point \[\left( \frac{a^2}{4}, \frac{a^2}{4} \right)\] ?


 Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1? 


Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points \[x = \frac{2 a t^2}{1 + t^2}, y = \frac{2 a t^3}{1 + t^2}\text { at } t = \frac{1}{2}\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = a(θ + sinθ), y = a(1 − cosθ) at θ ?


The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?


Find the equation of the tangent to the curve x = sin 3ty = cos 2t at

\[t = \frac{\pi}{4}\] ?


Show that the curves 4x = y2 and 4xy = k cut at right angles, if k2 = 512 ?


Find the slope of the normal at the point 't' on the curve \[x = \frac{1}{t}, y = t\] ?


Write the equation of the normal to the curve y = x + sin x cos x at \[x = \frac{\pi}{2}\] ?


Write the slope of the normal to the curve \[y = \frac{1}{x}\]  at the point \[\left( 3, \frac{1}{3} \right)\] ?


The equation to the normal to the curve y = sin x at (0, 0) is ___________ .


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .


At what point the slope of the tangent to the curve x2 + y2 − 2x − 3 = 0 is zero


The slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at the point (2, −1) is _____________ .


The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .


Find the angle of intersection of the curves y2 = x and x2 = y.


Find the condition for the curves `x^2/"a"^2 - y^2/"b"^2` = 1; xy = c2 to interest orthogonally.


Find an angle θ, 0 < θ < `pi/2`, which increases twice as fast as its sine.


Find the angle of intersection of the curves y = 4 – x2 and y = x2.


Prove that the curves y2 = 4x and x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2)


The curve y = `x^(1/5)` has at (0, 0) ______.


Find a point on the curve y = (x – 2)2. at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).


Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis. 


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0.


Which of the following represent the slope of normal?


The slope of the tangentto the curve `x= t^2 + 3t - 8, y = 2t^2 - 2t - 5` at the point `(2, -1)` is


For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×