मराठी

Find the Equation of the Tangent to the Curve X = Sin 3t, Y = Cos 2t at T = π 4 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the tangent to the curve x = sin 3ty = cos 2t at

\[t = \frac{\pi}{4}\] ?

उत्तर

\[x = \sin 3t \text { and } y = \cos 2t\]

\[\frac{dx}{dt} = 3 \cos 3t \text { and } \frac{dy}{dt} = - 2 \sin 2t\]

\[ \therefore \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{- 2 \sin 2t}{3 \cos 3t}\]

\[\text { Slope of tangent },m= \left( \frac{dy}{dx} \right)_{t = \frac{\pi}{4}} =-\frac{- 2 \sin \left( \frac{\pi}{2} \right)}{3 \cos \left( \frac{3\pi}{4} \right)}=\frac{- 2}{\frac{- 3}{\sqrt{2}}}=\frac{2\sqrt{2}}{3}\]

\[ x_1 = \sin \left( 3 \times \frac{\pi}{4} \right) = \frac{1}{\sqrt{2}} \text { and }y_1 = \cos \left( 2 \times \frac{\pi}{4} \right) = 0\]

\[\text { So }, \left( x_1 , y_1 \right) = \left( \frac{1}{\sqrt{2}}, 0 \right)\]

\[\text { Equation of tangent is },\]

\[y - y_1 = m \left( x - x_1 \right)\]

\[ \Rightarrow y - 0 = \frac{2\sqrt{2}}{3}\left( x - \frac{1}{\sqrt{2}} \right)\]

\[ \Rightarrow 3y = 2\sqrt{2}x - 2\]

\[ \Rightarrow 2\sqrt{2}x - 3y - 2 = 0\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Tangents and Normals - Exercise 16.2 [पृष्ठ २९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 16 Tangents and Normals
Exercise 16.2 | Q 19 | पृष्ठ २९

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`


Find the slope of the tangent and the normal to the following curve at the indicted point  y = (sin 2x + cot x + 2)2 at x = π/2 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  x2 + 3y + y2 = 5 at (1, 1)  ?


Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?


Find the points on the curve xy + 4 = 0 at which the tangents are inclined at an angle of 45° with the x-axis ?


Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?


Find the points on the curve\[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is  parallel to the y-axis ?


Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is  parallel to y-axis ?


Find the equation of the normal to y = 2x3 − x2 + 3 at (1, 4) ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[y^2 = \frac{x^3}{4 - x}at \left( 2, - 2 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { at } \left( x_1 , y_1 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y2 = 4ax at (x1, y1)?


Find the equation of the tangent and the normal to the following curve at the indicated points \[x = \frac{2 a t^2}{1 + t^2}, y = \frac{2 a t^3}{1 + t^2}\text { at } t = \frac{1}{2}\] ?


Find the equation of the tangent and the normal to the following curve at the indicated points x = a(θ + sinθ), y = a(1 − cosθ) at θ ?


Find the equation of the tangent and the normal to the following curve at the indicated points  x = asect, y = btant at t ?


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?


Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?


Find the angle of intersection of the following curve \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and x2 + y2 = ab ?


Show that the following set of curve intersect orthogonally x3 − 3xy2 = −2 and 3x2y − y3 = 2 ?


Show that the following set of curve intersect orthogonally x2 + 4y2 = 8 and x2 − 2y2 = 4 ?


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other ?


Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?


If the tangent line at a point (x, y) on the curve y = f(x) is parallel to x-axis, then write the value of \[\frac{dy}{dx}\] ?


Find the coordinates of the point on the curve y2 = 3 − 4x where tangent is parallel to the line 2x + y− 2 = 0 ?


At what point the slope of the tangent to the curve x2 + y2 − 2x − 3 = 0 is zero


The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .


The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is

(a) \[\left( 4, \frac{8}{3} \right)\]

(b) \[\left( - 4, \frac{8}{3} \right)\]

(c) \[\left( 4, - \frac{8}{3} \right)\]

(d) none of these

 


The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .


Find the equation of a tangent and the normal to the curve `"y" = (("x" - 7))/(("x"-2)("x"-3)` at the point where it cuts the x-axis


Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.


The equation of the normal to the curve y = sinx at (0, 0) is ______.


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.


Find the angle of intersection of the curves y = 4 – x2 and y = x2.


If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.


The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.


The equation of tangent to the curve y(1 + x2) = 2 – x, where it crosses x-axis is ______.


The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.


The distance between the point (1, 1) and the tangent to the curve y = e2x + x2 drawn at the point x = 0


Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis. 


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×