मराठी

Prove that ( X a ) N + ( Y B ) N = 2 Touches the Straight Line X a + Y B = 2 for All N ∈ N, at the Point (A, B) ? - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that \[\left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\] touches the straight line \[\frac{x}{a} + \frac{y}{b} = 2\] for all n ∈ N, at the point (a, b) ?

उत्तर

\[\text { Now }, \left( \frac{x}{a} \right)^n + \left( \frac{y}{b} \right)^n = 2\]

\[\frac{n}{a} \left( \frac{x}{a} \right)^{n - 1} + \frac{n}{b} \left( \frac{y}{b} \right)^{n - 1} \frac{dy}{dx} = 0\]

\[\frac{n}{b} \left( \frac{y}{b} \right)^{n - 1} \frac{dy}{dx} = \frac{- n}{a} \left( \frac{x}{a} \right)^{n - 1} \]

\[\frac{dy}{dx} = \frac{- n}{a} \left( \frac{x}{a} \right)^{n - 1} \times \frac{b}{n} \left( \frac{b}{y} \right)^{n - 1} = \frac{- b}{a} \left( \frac{bx}{ay} \right)^{n - 1} \]

\[\text { Slope of tangent }= \left( \frac{dy}{dx} \right)_\left( a, b \right) =\frac{- b}{a} \left( \frac{b * a}{a * b} \right)^{n - 1} =\frac{- b}{a}... (2)\]

\[\text { The equation of tangent is }\]

\[y - b = \frac{- b}{a}\left( x - a \right)\]

\[ \Rightarrow ya - ab = - xb + ab\]

\[ \Rightarrow xb + ya = 2ab\]

\[ \Rightarrow \frac{x}{a} + \frac{y}{b} = 2\]

So, the given line touches the given curve at the given point.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Tangents and Normals - Exercise 16.2 [पृष्ठ २९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 16 Tangents and Normals
Exercise 16.2 | Q 18 | पृष्ठ २९

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the equations of the tangent and normal to the curve x = a sin3θ and y = a cos3θ at θ=π/4.


Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.


Find the point on the curve y = x3 − 11x + 5 at which the tangent is y = x − 11.

 

Find the points on the curve y = x3 at which the slope of the tangent is equal to the y-coordinate of the point.


Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).


Prove that the curves x = y2 and xy = k cut at right angles if 8k2 = 1. [Hint: Two curves intersect at right angle if the tangents to the curves at the point of intersection are perpendicular to each other.]


Find the slope of the tangent and the normal to the following curve at the indicted point y = 2x2 + 3 sin x at x = 0 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a cos3 θ, y = a sin3 θ at θ = π/4 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  y = (sin 2x + cot x + 2)2 at x = π/2 ?


If the tangent to the curve y = x3 + ax + b at (1, − 6) is parallel to the line x − y + 5 = 0, find a and b ?


Find the point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slop is \[- \frac{1}{6}\]  ?


Find the equation of the normal to y = 2x3 − x2 + 3 at (1, 4) ?


 Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1? 


Find the equation of the tangent and the normal to the following curve at the indicated point \[y^2 = \frac{x^3}{4 - x}at \left( 2, - 2 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point xy = c2 at \[\left( ct, \frac{c}{t} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { at } \left( x_1 , y_1 \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?


 Find the equation of the tangent and the normal to the following curve at the indicated point  x2 = 4y at (2, 1) ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y2 = 4x at (1, 2)  ?


Find the equation of the tangent to the curve x = sin 3ty = cos 2t at

\[t = \frac{\pi}{4}\] ?


Find the equation of  the tangents to the curve 3x2 – y2 = 8, which passes through the point (4/3, 0) ?


Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?


Write the coordinates of the point on the curve y2 = x where the tangent line makes an angle \[\frac{\pi}{4}\] with x-axis  ?


Write the angle between the curves y = e−x and y = ex at their point of intersections ?


Write the equation of the normal to the curve y = cos x at (0, 1) ?


The equation of the normal to the curve y = x + sin x cos x at x = `π/2` is ___________ .


If the tangent to the curve x = a t2, y = 2 at is perpendicular to x-axis, then its point of contact is _____________ .


The equation of the normal to the curve x = a cos3 θ, y = a sin3 θ at the point θ = π/4 is __________ .


The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is

(a) \[\left( 4, \frac{8}{3} \right)\]

(b) \[\left( - 4, \frac{8}{3} \right)\]

(c) \[\left( 4, - \frac{8}{3} \right)\]

(d) none of these

 


Find the angle of intersection of the curves \[y^2 = 4ax \text { and } x^2 = 4by\] .

 

Find the angle of intersection of the curves y2 = x and x2 = y.


At what points on the curve x2 + y2 – 2x – 4y + 1 = 0, the tangents are parallel to the y-axis?


If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.


The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.


The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.


The line y = x + 1 is a tangent to the curve y2 = 4x at the point


The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are


Let `y = f(x)` be the equation of the curve, then equation of normal is


Which of the following represent the slope of normal?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×