मराठी

Write the Angle Between the Curves Y = E−X and Y = Ex at Their Point of Intersections ? - Mathematics

Advertisements
Advertisements

प्रश्न

Write the angle between the curves y = e−x and y = ex at their point of intersections ?

बेरीज

उत्तर

\[\text { Given }: \]

\[y = e^{- x} . . . \left( 1 \right)\]

\[y = e^x . . . \left( 2 \right)\]

\[\text { On substituting the value of y in (1), we get }\]

\[ e^{- x} = e^x \]

\[ \Rightarrow x = 0\]

\[\text { and }\]

\[y = 1 ...................[\text { From } (2)]\]

\[\text { On differentiating (1) w.r.t.x,we get }\]

\[\frac{dy}{dx} = - e^{- x} \]

\[ \Rightarrow m_1 = \left( \frac{dy}{dx} \right)_\left( 0, 1 \right) = - 1\]

\[\text { On differentiating (2) w.r.t.x,we get }\]

\[\frac{dy}{dx} = e^x \]

\[ \Rightarrow m_2 = \left( \frac{dy}{dx} \right)_\left( 0, 1 \right) = 1\]

\[ \because m_1 \times m_2 = - 1\]

Since the multiplication of the slopes is - 1.

So the slopes are perpendicular to each other.

\[ \therefore \text { Required angle } = \frac{\pi}{2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Tangents and Normals - Exercise 16.4 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 16 Tangents and Normals
Exercise 16.4 | Q 14 | पृष्ठ ४२

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the equations of the tangent and normal to the curve `x^2/a^2−y^2/b^2=1` at the point `(sqrt2a,b)` .


Find the slope of the tangent to the curve y = (x -1)/(x - 2), x != 2 at x = 10.


Find a point on the curve y = (x − 2)2 at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).


Find the equations of all lines having slope 0 which are tangent to the curve  y =   `1/(x^2-2x + 3)`


Find points on the curve `x^2/9 + "y"^2/16 = 1` at which the tangent is parallel to x-axis.


Find the equation of the normal at the point (am2am3) for the curve ay2 = x3.


The line y = x + 1 is a tangent to the curve y2 = 4x at the point

(A) (1, 2)

(B) (2, 1)

(C) (1, −2)

(D) (−1, 2)


Find the equation of the normal to curve y2 = 4x at the point (1, 2).


The slope of the tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2,– 1) is

(A) `22/7`

(B) `6/7`

(C) `7/6`

(D) `(-6)/7`


Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.


Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x^3} \text { at } x = 4\] ?


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a cos3 θ, y = a sin3 θ at θ = π/4 ?


Who that the tangents to the curve y = 7x3 + 11 at the points x = 2 and x = −2 are parallel ?


Find the equation of the tangent and the normal to the following curve at the indicated point x4 − bx3 + 13x2 − 10x + 5 at (0, 5)  ?


Find the equation of the tangent and the normal to the following curve at the indicated point  \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y2 = 4x at (1, 2)  ?


Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?    


Find the equation of the tangent and the normal to the following curve at the indicated point  y2 = 4ax at (x1, y1)?


The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?


Find the equations of all lines of slope zero and that are tangent to the curve \[y = \frac{1}{x^2 - 2x + 3}\] ?


Find the equation of the tangent to the curve x2 + 3y − 3 = 0, which is parallel to the line y= 4x − 5 ?


At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?


Find the angle of intersection of the following curve  2y2 = x3 and y2 = 32x ?


Find the angle of intersection of the following curve y = 4 − x2 and y = x2 ?


If the tangent to a curve at a point (xy) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?


Write the equation of the normal to the curve y = cos x at (0, 1) ?


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .


The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .


The slope of the tangent to the curve x = t2 + 3 t − 8, y = 2t2 − 2t − 5 at point (2, −1) is ________________ .


If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .


The tangent to the curve given by x = et . cost, y = et . sint at t = `pi/4` makes with x-axis an angle ______.


The curve y = `x^(1/5)` has at (0, 0) ______.


The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:


The two curves x3 - 3xy2 + 5 = 0 and 3x2y - y3 - 7 = 0


The tangent to the curve y = x2 + 3x will pass through the point (0, -9) if it is drawn at the point ____________.


Find the points on the curve `y = x^3` at which the slope of the tangent is equal to the y-coordinate of the point


An edge of variable cube is increasing at the rate of 3 cm/s. The volume of the cube increasing fast when the edge is 10 cm long is ______ cm3/s.


Two vertical poles of heights, 20 m and 80 m stand apart on a horizontal plane. The height (in meters) of the point of intersection of the lines joining the top of each pole to the foot of the other, From this horizontal plane is ______.


The curve `(x/a)^n + (y/b)^n` = 2, touches the line `x/a + y/b` = 2 at the point (a, b) for n is equal to ______.


The normal of the curve given by the equation x = a(sinθ + cosθ), y = a(sinθ – cosθ) at the point θ is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×