Advertisements
Advertisements
प्रश्न
Find the equation of the tangents to the curve 3x2 – y2 = 8, which passes through the point (4/3, 0) ?
उत्तर
We have,
3x2 – y2 = 8 ...(i)
Differentiating both sides w.r.t x, we get
\[6x - 2y\frac{dy}{dx} = 0\]
\[ \Rightarrow 2y\frac{dy}{dx} = 6x\]
\[ \Rightarrow \frac{dy}{dx} = \frac{6x}{2y}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{3x}{y}\]
Let tangent at (h, k) pass through
\[\left( \frac{4}{3}, 0 \right)\] .
Since, (h, k) lies on (i), we get
\[3 h^2 - k^2 = 8 . . . (ii)\]
Slope of tangent at (h, k) = \[\frac{3h}{k}\]
The equation of tangent at (h, k) is given by,
\[(y - k) = \frac{3h}{k}(x - h) . . . (iii)\]
Since, the tangent passess through
\[\left( \frac{4}{3}, 0 \right)\] .
\[\therefore (0 - k) = \frac{3h}{k}\left( \frac{4}{3} - h \right)\]
\[ \Rightarrow - k = \frac{4h}{k} - \frac{3 h^2}{k}\]
\[ \Rightarrow - k^2 = 4h - 3 h^2\]
\[\Rightarrow 8 - 3 h^2 = 4h - 3 h^2 \left[ \text { From } \left( ii \right) \right]\]
\[ \Rightarrow 8 = 4h\]
\[ \Rightarrow h = 2\]
Using (ii), we get
\[ \Rightarrow k^2 = 4\]
\[ \Rightarrow k = \pm 2\]
So, the points on curve (i) at which tangents pass through
\[\left( \frac{4}{3}, 0 \right)\] are
\[\left( 2, \pm 2 \right)\] .
Now, from (iii), the equation of tangents are
\[(y - 2) = \frac{6}{2}(x - 2), \text { or }, 3x - y - 4 = 0, \text { and }\]
\[(y + 2) = \frac{6}{- 2}(x - 2), \text { or }, 3x + y - 4 = 0\]
APPEARS IN
संबंधित प्रश्न
Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.
The equation of tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x – 5. Find the values of a and b.
Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t
Find the equations of the tangent and normal to the curve `x^2/a^2−y^2/b^2=1` at the point `(sqrt2a,b)` .
Find a point on the curve y = (x − 2)2 at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).
Find the equation of all lines having slope −1 that are tangents to the curve `y = 1/(x -1), x != 1`
Find points on the curve `x^2/9 + "y"^2/16 = 1` at which the tangent is parallel to x-axis.
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x2 at (0, 0)
Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
(A) (1, 2)
(B) (2, 1)
(C) (1, −2)
(D) (−1, 2)
If the tangent to the curve y = x3 + ax + b at (1, − 6) is parallel to the line x − y + 5 = 0, find a and b ?
Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?
At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?
Find the point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slop is \[- \frac{1}{6}\] ?
Find the equation of the normal to y = 2x3 − x2 + 3 at (1, 4) ?
Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = θ + sinθ, y = 1 + cosθ at θ = \[\frac{\pi}{2}\] ?
Find the equation of the normal to the curve ay2 = x3 at the point (am2, am3) ?
Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?
Find the equation of the tangent to the curve \[y = \sqrt{3x - 2}\] which is parallel to the 4x − 2y + 5 = 0 ?
Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?
Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x2 ?
Show that the following set of curve intersect orthogonally x2 + 4y2 = 8 and x2 − 2y2 = 4 ?
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .
The point on the curve 9y2 = x3, where the normal to the curve makes equal intercepts with the axes is
(a) \[\left( 4, \frac{8}{3} \right)\]
(b) \[\left( - 4, \frac{8}{3} \right)\]
(c) \[\left( 4, - \frac{8}{3} \right)\]
(d) none of these
The normal at the point (1, 1) on the curve 2y + x2 = 3 is _____________ .
Find the equation of the tangent line to the curve `"y" = sqrt(5"x" -3) -5`, which is parallel to the line `4"x" - 2"y" + 5 = 0`.
Find the equation of all the tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π, that are parallel to the line x + 2y = 0.
The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______.
The equation of the normal to the curve y = sinx at (0, 0) is ______.
The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:
Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis.
The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are
The slope of the tangentto the curve `x= t^2 + 3t - 8, y = 2t^2 - 2t - 5` at the point `(2, -1)` is
If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.
If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points `(3cosθ, sqrt(3) sinθ)` and `(-3sinθ, sqrt(3) cos θ); θ ∈(0, π/2)`; then `(2 cot β)/(sin 2θ)` is equal to ______.