Advertisements
Advertisements
प्रश्न
Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.
उत्तर
The equation of the given curve is x2 = 4y.
Differentiating x2 = 4y with respect to x, we get
`dy/dx=x/2`
Let (h, k) be the coordinates of the point of contact of the normal to the curve x2 = 4y. Now, slope of the tangent at (h, k) is given by
`[dy/dx]_(h,k)=h/2`
Hence, slope of the normal at (h,k)=-2/h
Therefore, the equation of normal at (h, k) is
`y-k=-2/h(x-h).....(1)`
Since it passes through the point (1, 2) we have
`2-k=-2/h(1-h) or k=2+2/h(1-h) ...............(2)`
Since (h, k) lies on the curve x2 = 4y, we have
`h^2=4k ...............(3)`
From (2) and (3), we have h = 2 and k = 1. Substituting the values of h and k in (1), we get the required equation of normal as
`y-1=-2/2(x-2) or x+y=3`
Also, slope of the tangent = 1
∴ Equation of tangent at (1, 2) is y − 2 = 1 (x − 1)
⇒ y = x + 1
APPEARS IN
संबंधित प्रश्न
Find the equation of all lines having slope −1 that are tangents to the curve `y = 1/(x -1), x != 1`
Find the equations of all lines having slope 0 which are tangent to the curve y = `1/(x^2-2x + 3)`
Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).
Find the equations of the tangent and the normal, to the curve 16x2 + 9y2 = 145 at the point (x1, y1), where x1 = 2 and y1 > 0.
Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x^3} \text { at } x = 4\] ?
Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = −π/2 ?
Find the points on the curve xy + 4 = 0 at which the tangents are inclined at an angle of 45° with the x-axis ?
Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?
Find the points on the curve y = x3 where the slope of the tangent is equal to the x-coordinate of the point ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = asect, y = btant at t ?
Find the equation of the tangent to the curve x2 + 3y − 3 = 0, which is parallel to the line y= 4x − 5 ?
Find the equation of the tangent to the curve x = sin 3t, y = cos 2t at
\[t = \frac{\pi}{4}\] ?
Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { and } xy = c^2\] ?
If the tangent line at a point (x, y) on the curve y = f(x) is parallel to y-axis, find the value of \[\frac{dx}{dy}\] ?
Write the coordinates of the point on the curve y2 = x where the tangent line makes an angle \[\frac{\pi}{4}\] with x-axis ?
Write the equation of the normal to the curve y = cos x at (0, 1) ?
The equation of the normal to the curve x = a cos3 θ, y = a sin3 θ at the point θ = π/4 is __________ .
The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .
Find the equation of all the tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π, that are parallel to the line x + 2y = 0.
Show that the equation of normal at any point on the curve x = 3cos θ – cos3θ, y = 3sinθ – sin3θ is 4 (y cos3θ – x sin3θ) = 3 sin 4θ
The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______.
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.
If the curve ay + x2 = 7 and x3 = y, cut orthogonally at (1, 1), then the value of a is ______.
The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.
The tangent to the parabola x2 = 2y at the point (1, `1/2`) makes with the x-axis an angle of ____________.
The normal at the point (1, 1) on the curve `2y + x^2` = 3 is
If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.