मराठी

The Equation of the Normal to the Curve X = a Cos3 θ, Y = a Sin3 θ at the Point θ = π/4 is - Mathematics

Advertisements
Advertisements

प्रश्न

The equation of the normal to the curve x = a cos3 θ, y = a sin3 θ at the point θ = π/4 is __________ .

पर्याय

  • x = 0

  • y = 0

  • x = y

  • x + y = a

MCQ

उत्तर

`x = y`

 

\[\text { Here,} \]

\[x = a \cos^3 \theta \text { and } y = a \sin^3 \theta\]

\[\frac{dx}{d\theta} = - 3a \cos^2 \theta \sin \theta \text { and } \frac{dy}{d\theta} = 3a \sin^2 \theta \cos \theta\]

\[ \therefore \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{3a \sin^2 \theta \cos \theta}{- 3a \cos^2 \theta \sin \theta} = - \tan \theta\]

\[\text { Now,} \]

\[\text { Slope of the tangent } = \left( \frac{dy}{dx} \right)_\theta = \frac{\pi}{4} =-\text { tan}\frac{\pi}{4}=-1\]

\[\left( x_1 , y_1 \right) = \left( a \cos^3 \frac{\pi}{4}, a \sin^3 \frac{\pi}{4} \right) = \left( \frac{a}{2\sqrt{2}}, \frac{a}{2\sqrt{2}} \right)\]

\[ \therefore \text { Equation of the normal }\]

\[ = y - y_1 = \frac{- 1}{m} \left( x - x_1 \right)\]

\[ \Rightarrow y - \frac{a}{2\sqrt{2}} = 1 \left( x - \frac{a}{2\sqrt{2}} \right)\]

\[ \Rightarrow x = y\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Tangents and Normals - Exercise 16.5 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 16 Tangents and Normals
Exercise 16.5 | Q 19 | पृष्ठ ४३

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


Find the equation of all lines having slope −1 that are tangents to the curve  `y = 1/(x -1), x != 1`


Find the equation of all lines having slope 2 which are tangents to the curve `y =   1/(x- 3), x != 3`


Find the equation of the tangent to the curve `y = sqrt(3x-2)`  which is parallel to the line 4x − 2y + 5 = 0.

 

The line y = mx + 1 is a tangent to the curve y2 = 4x if the value of m is

(A) 1

(B) 2

(C) 3

(D) 1/2


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?


If the tangent to the curve y = x3 + ax + b at (1, − 6) is parallel to the line x − y + 5 = 0, find a and b ?


Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?


Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?


At what points on the curve y = 2x2 − x + 1 is the tangent parallel to the line y = 3x + 4?


Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at \[\left( \frac{a}{m^2}, \frac{2a}{m} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?


Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?    


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?


The equation of the tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x − 5. Find the values of a and b ?


Determine the equation(s) of tangent (s) line to the curve y = 4x3 − 3x + 5 which are perpendicular to the line 9y + x + 3 = 0 ?


Find the angle of intersection of the following curve  x2 = 27y and y2 = 8x ?


Find the angle of intersection of the following curve y = 4 − x2 and y = x2 ?


Show that the following set of curve intersect orthogonally x3 − 3xy2 = −2 and 3x2y − y3 = 2 ?


Prove that the curves y2 = 4x and x2 + y2 - 6x + 1 = 0 touch each other at the point (1, 2) ?


The equation of the normal to the curve 3x2 − y2 = 8 which is parallel to x + 3y = 8 is ____________ .


The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .


The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .


Find the equation of tangents to the curve y = cos(+ y), –2π ≤ x ≤ 2π that are parallel to the line + 2y = 0.


The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______.


For which value of m is the line y = mx + 1 a tangent to the curve y2 = 4x?


`"sin"^"p" theta  "cos"^"q" theta` attains a maximum, when `theta` = ____________.


Tangent is drawn to the ellipse `x^2/27 + y^2 = 1` at the point `(3sqrt(3) cos theta, sin theta), 0 < 0 < 1`. The sum of the intercepts on the axes made by the tangent is minimum if 0 is equal to


The number of common tangents to the circles x2 + y2 – 4x – 6x – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is


The line is y = x + 1 is a tangent to the curve y2 = 4x at the point.


The normal at the point (1, 1) on the curve `2y + x^2` = 3 is


If the curves y2 = 6x, 9x2 + by2 = 16, cut each other at right angles then the value of b is ______.


The normal of the curve given by the equation x = a(sinθ + cosθ), y = a(sinθ – cosθ) at the point θ is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×