मराठी

Show that the Following Set of Curve Intersect Orthogonally X3 − 3xy2 = −2 and 3x2y − Y3 = 2 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the following set of curve intersect orthogonally x3 − 3xy2 = −2 and 3x2y − y3 = 2 ?

उत्तर

\[\text { Let the given curves intersect at }\left( x_1 , y_1 \right)\]

\[ x^3 - 3x y^2 = - 2 . . . \left( 1 \right)\]

\[3 x^2 y - y^3 = 2 . . . \left( 2 \right)\]

\[\text { Differentiating (1) w.r.t.x,}\]

\[3 x^2 - 3 y^2 - 6xy\frac{dy}{dx} = 0\]

\[ \Rightarrow \frac{dy}{dx} = \frac{3 x^2 - 3 y^2}{6xy} = \frac{x^2 - y^2}{2xy}\]

\[ \Rightarrow m_1 = \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) = \frac{{x_1}^2 - {y_1}^2}{2 x_1 y_1}\]

\[\text { Differenntiating (2) w.r.t.x, }\]

\[3 x^2 \frac{dy}{dx} + 6xy - 3 y^2 \frac{dy}{dx} = 0\]

\[ \Rightarrow \frac{dy}{dx}\left( 3 x^2 - 3 y^2 \right) = - 6xy\]

\[ \Rightarrow \frac{dy}{dx} = \frac{- 6xy}{3 x^2 - 3 y^2} = \frac{- 2xy}{x^2 - y^2}\]

\[ \Rightarrow m_2 = \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) = \frac{- 2 x_1 y_1}{{x_1}^2 - {y_1}^2}\]

\[\text { Now,} m_1 \times m_2 = \frac{{x_1}^2 - {y_1}^2}{2 x_1 y_1} \times \frac{- 2 x_1 y_1}{{x_1}^2 - {y_1}^2}\]

\[ \Rightarrow m_1 \times m_2 = - 1\]

\[Since, m_1 \times m_2 = - 1\]

So, the given curves intersect orthogonally.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Tangents and Normals - Exercise 16.3 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 16 Tangents and Normals
Exercise 16.3 | Q 2.2 | पृष्ठ ४०

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the equations of all lines having slope 0 which are tangent to the curve  y =   `1/(x^2-2x + 3)`


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)


For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.


Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.


Find the equation of the normals to the curve y = x3 + 2+ 6 which are parallel to the line x + 14y + 4 = 0.


Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.


Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x^3} \text { at } x = 4\] ?


Find the slope of the tangent and the normal to the following curve at the indicted point  x = a cos3 θ, y = a sin3 θ at θ = π/4 ?


Find the slope of the tangent and the normal to the following curve at the indicted point  y = (sin 2x + cot x + 2)2 at x = π/2 ?


If the tangent to the curve y = x3 + ax + b at (1, − 6) is parallel to the line x − y + 5 = 0, find a and b ?


At what point of the curve y = x2 does the tangent make an angle of 45° with the x-axis?


Find the equation of the tangent and the normal to the following curve at the indicated point x4 − bx3 + 13x2 − 10x + 5 at (0, 5)  ?


Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3  ?


Find the equation of the tangent and the normal to the following curve at the indicated point  \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( a\sec\theta, b\tan\theta \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y2 = 4x at (1, 2)  ?


Find the equation of the tangent to the curve x = θ + sin θ, y = 1 + cos θ at θ = π/4 ?


Find the equation of the tangent line to the curve y = x2 + 4x − 16 which is parallel to the line 3x − y + 1 = 0 ?


Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?


At what points will be tangents to the curve y = 2x3 − 15x2 + 36x − 21 be parallel to x-axis ? Also, find the equations of the tangents to the curve at these points ?


Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { and } xy = c^2\] ?


If the tangent line at a point (x, y) on the curve y = f(x) is parallel to x-axis, then write the value of \[\frac{dy}{dx}\] ?


Write the angle between the curves y2 = 4x and x2 = 2y − 3 at the point (1, 2) ?


The equation of the normal to the curve y = x + sin x cos x at x = `π/2` is ___________ .


The equation of the normal to the curve y = x(2 − x) at the point (2, 0) is ________________ .


If the tangent to the curve x = a t2, y = 2 at is perpendicular to x-axis, then its point of contact is _____________ .


The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .


The normal at the point (1, 1) on the curve 2y + x2 = 3 is _____________ .


Find the equation of the tangent line to the curve `"y" = sqrt(5"x" -3) -5`, which is parallel to the line  `4"x" - 2"y" + 5 = 0`.


Show that the equation of normal at any point on the curve x = 3cos θ – cos3θ, y = 3sinθ – sin3θ is 4 (y cos3θ – x sin3θ) = 3 sin 4θ


The curve y = `x^(1/5)` has at (0, 0) ______.


The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.


The tangent to the parabola x2 = 2y at the point (1, `1/2`) makes with the x-axis an angle of ____________.


The tangent to the curve y = x2 + 3x will pass through the point (0, -9) if it is drawn at the point ____________.


Two vertical poles of heights, 20 m and 80 m stand apart on a horizontal plane. The height (in meters) of the point of intersection of the lines joining the top of each pole to the foot of the other, From this horizontal plane is ______.


If m be the slope of a tangent to the curve e2y = 1 + 4x2, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×