Advertisements
Advertisements
प्रश्न
Find the equation of all lines having slope −1 that are tangents to the curve `y = 1/(x -1), x != 1`
उत्तर
∴The equation of the tangent through (2, 1) is given by,
y − 1 = −1 (x − 2)
⇒ y − 1 = − x + 2
⇒ y + x − 3 = 0
Hence, the equations of the required lines are y + x + 1 = 0 and y + x − 3 = 0.
APPEARS IN
संबंधित प्रश्न
Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.
Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.
Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.
Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x^3} \text { at } x = 4\] ?
Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x} \text { at }x = 9\] ?
Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = −π/2 ?
Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?
Find the points on the curve y = x3 − 2x2 − 2x at which the tangent lines are parallel to the line y = 2x− 3 ?
Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[y^2 = \frac{x^3}{4 - x}at \left( 2, - 2 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( x_0 , y_0 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[x^\frac{2}{3} + y^\frac{2}{3}\] = 2 at (1, 1) ?
Find the equations of all lines having slope 2 and that are tangent to the curve \[y = \frac{1}{x - 3}, x \neq 3\] ?
Find the equation of the tangents to the curve 3x2 – y2 = 8, which passes through the point (4/3, 0) ?
Find the angle of intersection of the following curve x2 = 27y and y2 = 8x ?
Show that the following set of curve intersect orthogonally x2 + 4y2 = 8 and x2 − 2y2 = 4 ?
Prove that the curves y2 = 4x and x2 + y2 - 6x + 1 = 0 touch each other at the point (1, 2) ?
Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { and } xy = c^2\] ?
Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { and } \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1\] ?
If the straight line xcos \[\alpha\] +y sin \[\alpha\] = p touches the curve \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\] then prove that a2cos2 \[\alpha\] \[-\] b2sin2 \[\alpha\] = p2 ?
If the tangent to a curve at a point (x, y) is equally inclined to the coordinates axes then write the value of \[\frac{dy}{dx}\] ?
Write the coordinates of the point on the curve y2 = x where the tangent line makes an angle \[\frac{\pi}{4}\] with x-axis ?
The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .
If the line y = x touches the curve y = x2 + bx + c at a point (1, 1) then _____________ .
The equation of the normal to the curve x = a cos3 θ, y = a sin3 θ at the point θ = π/4 is __________ .
The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .
Find the condition for the curves `x^2/"a"^2 - y^2/"b"^2` = 1; xy = c2 to interest orthogonally.
The point on the curve y2 = x, where the tangent makes an angle of `pi/4` with x-axis is ______.
Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y
The curve y = `x^(1/5)` has at (0, 0) ______.
The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.
The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:
The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are
If (a, b), (c, d) are points on the curve 9y2 = x3 where the normal makes equal intercepts on the axes, then the value of a + b + c + d is ______.
The normals to the curve x = a(θ + sinθ), y = a(1 – cosθ) at the points θ = (2n + 1)π, n∈I are all ______.
For the curve y2 = 2x3 – 7, the slope of the normal at (2, 3) is ______.