Advertisements
Advertisements
प्रश्न
Find the equation of the tangent and the normal to the following curve at the indicated point \[y^2 = \frac{x^3}{4 - x}at \left( 2, - 2 \right)\] ?
उत्तर
\[y^2 =\frac{x^3}{4 - x}\]
\[\text { Differentiating both sides w.r.t.x}, \]
\[2y \frac{dy}{dx} = \frac{\left( 4 - x \right)\left( 3 x^2 \right) - x^3 \left( - 1 \right)}{\left( 4 - x \right)^2} = \frac{12 x^2 - 3 x^3 + x^3}{\left( 4 - x \right)^2} = \frac{12 x^2 - 2 x^3}{\left( 4 - x \right)^2}\]
\[\frac{dy}{dx} = \frac{12 x^2 - 2 x^3}{2y \left( 4 - x \right)^2}\]
\[\text { Given } \left( x_1 , y_1 \right) = \left( 2, - 2 \right)\]
\[\text { Slope of tangent,}m= \left( \frac{dy}{dx} \right)_\left( 2, - 2 \right) =\frac{48 - 16}{- 16}=-2\]
\[\text { Equation of tangent is },\]
\[y - y_1 = m\left( x - x_1 \right)\]
\[ \Rightarrow y + 2 = - 2 \left( x - 2 \right)\]
\[ \Rightarrow y + 2 = - 2x + 4\]
\[ \Rightarrow 2x + y - 2 = 0\]
\[\text { Equation of normal is },\]
\[y - y_1 = \frac{- 1}{m} \left( x - x_1 \right)\]
\[ \Rightarrow y + 2 = \frac{1}{2} \left( x - 2 \right)\]
\[ \Rightarrow 2y + 4 = x - 2\]
\[ \Rightarrow x - 2y - 6 = 0\]
APPEARS IN
संबंधित प्रश्न
Find the equation of all lines having slope 2 which are tangents to the curve `y = 1/(x- 3), x != 3`
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x3 at (1, 1)
Find the equation of the normals to the curve y = x3 + 2x + 6 which are parallel to the line x + 14y + 4 = 0.
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
(A) (1, 2)
(B) (2, 1)
(C) (1, −2)
(D) (−1, 2)
Show that the normal at any point θ to the curve x = a cosθ + a θ sinθ, y = a sinθ – aθ cosθ is at a constant distance from the origin.
Find the slope of the tangent and the normal to the following curve at the indicted point xy = 6 at (1, 6) ?
Find the point on the curve y = x2 where the slope of the tangent is equal to the x-coordinate of the point ?
At what point of the curve y = x2 does the tangent make an angle of 45° with the x-axis?
Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is parallel to y-axis ?
Find the equation of the normal to y = 2x3 − x2 + 3 at (1, 4) ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3 ?
Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( a\sec\theta, b\tan\theta \right)\] ?
Find the equation of the tangent to the curve x = θ + sin θ, y = 1 + cos θ at θ = π/4 ?
Find the equation of the tangent and the normal to the following curve at the indicated points \[x = \frac{2 a t^2}{1 + t^2}, y = \frac{2 a t^3}{1 + t^2}\text { at } t = \frac{1}{2}\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = asect, y = btant at t ?
Find the equation of the normal to the curve x2 + 2y2 − 4x − 6y + 8 = 0 at the point whose abscissa is 2 ?
Find an equation of normal line to the curve y = x3 + 2x + 6 which is parallel to the line x+ 14y + 4 = 0 ?
Find the equation of a normal to the curve y = x loge x which is parallel to the line 2x − 2y + 3 = 0 ?
Find the angle of intersection of the following curve y2 = x and x2 = y ?
Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?
Show that the curves 4x = y2 and 4xy = k cut at right angles, if k2 = 512 ?
Write the angle between the curves y2 = 4x and x2 = 2y − 3 at the point (1, 2) ?
Write the equation of the normal to the curve y = cos x at (0, 1) ?
The equation to the normal to the curve y = sin x at (0, 0) is ___________ .
The equation of the normal to the curve y = x(2 − x) at the point (2, 0) is ________________ .
The angle between the curves y2 = x and x2 = y at (1, 1) is ______________ .
At what point the slope of the tangent to the curve x2 + y2 − 2x − 3 = 0 is zero
If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .
Find the angle of intersection of the curves \[y^2 = 4ax \text { and } x^2 = 4by\] .
Show that the equation of normal at any point on the curve x = 3cos θ – cos3θ, y = 3sinθ – sin3θ is 4 (y cos3θ – x sin3θ) = 3 sin 4θ
If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.
The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.
The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:
Find points on the curve `x^2/9 + "y"^2/16` = 1 at which the tangent is parallel to y-axis.
The line is y = x + 1 is a tangent to the curve y2 = 4x at the point.
The normal at the point (1, 1) on the curve `2y + x^2` = 3 is
If m be the slope of a tangent to the curve e2y = 1 + 4x2, then ______.