मराठी

Find the Equation of a Normal to the Curve Y = X Loge X Which is Parallel to the Line 2x − 2y + 3 = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of a normal to the curve y = x loge x which is parallel to the line 2x − 2y + 3 = 0 ?

बेरीज

उत्तर

Slope of the given line is 1

\[\text { Let }\left( x_1 , y_1 \right)\text { be the point where the tangent is drawn to the curve }.\]

\[\text { Since, the point lies on the curve } . \]

\[\text { Hence }, y_1 = x_1 \log_e x_1 ......... \left( 1 \right)\]

\[\text { Now,} y = x \log_e x \]

\[ \Rightarrow \frac{dy}{dx} = x \times \frac{1}{x} + \log_e x \left( 1 \right) = 1 + \log_e x\]

\[\text { Slope of tangent }=1 + \log_e x_1 \]

\[\text { Slope of normal } =\frac{- 1}{\text { Slope of tangent }}=\frac{- 1}{1 + \log_e x_1}\]

\[\text { Given that }\]

\[\text { Slope of normal = slope of the given line }\]

\[\frac{- 1}{1 + \log_e x_1} = 1\]

\[ \Rightarrow - 1 = 1 + \log_e x_1 \]

\[ \Rightarrow - 2 = \log_e x_1 \]

\[ \Rightarrow x_1 = e^{- 2} = \frac{1}{e^2}\]

\[\text { Now }, y_1 = e^{- 2} \left( - 2 \right) = \frac{- 2}{e^2} ............\left[ \text { From } (1) \right]\]

\[ \therefore \left( x_1 , y_1 \right) = \left( \frac{1}{e^2}, \frac{- 2}{e^2} \right)\]

\[\text { Equation of normal is },\]

\[y + \frac{2}{e^2} = 1 \left( x - \frac{1}{e^2} \right)\]

\[ \Rightarrow y + \frac{2}{e^2} = x - \frac{1}{e^2}\]

\[ \Rightarrow x - y = \frac{3}{e^2}\]

\[ \Rightarrow x - y = 3 e^{- 2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Tangents and Normals - Exercise 16.2 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 16 Tangents and Normals
Exercise 16.2 | Q 12 | पृष्ठ २८

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the equation of tangents to the curve y= x3 + 2x – 4, which are perpendicular to line x + 14y + 3 = 0.


Find the equations of the tangent and normal to the curve `x^2/a^2−y^2/b^2=1` at the point `(sqrt2a,b)` .


Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.


Find a point on the curve y = (x − 2)2 at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).


Find the equations of the tangent and normal to the given curves at the indicated points:

y = x3 at (1, 1)


Find the points on the curve y = x3 at which the slope of the tangent is equal to the y-coordinate of the point.


Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.


Find the equation of the normal at the point (am2am3) for the curve ay2 = x3.


The line y = x + 1 is a tangent to the curve y2 = 4x at the point

(A) (1, 2)

(B) (2, 1)

(C) (1, −2)

(D) (−1, 2)


Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.


Find the slope of the tangent and the normal to the following curve at the indicted point  x2 + 3y + y2 = 5 at (1, 1)  ?


Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?


Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?


At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?


Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3  ?


 Find the equation of the tangent and the normal to the following curve at the indicated point  x2 = 4y at (2, 1) ?


Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?


Find the equation of the tangent to the curve x = θ + sin θ, y = 1 + cos θ at θ = π/4 ?


Find the equation of  the tangents to the curve 3x2 – y2 = 8, which passes through the point (4/3, 0) ?


Find the angle of intersection of the following curve  2y2 = x3 and y2 = 32x ?


Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?


Show that the following curve intersect orthogonally at the indicated point y2 = 8x and 2x2 +  y2 = 10 at  \[\left( 1, 2\sqrt{2} \right)\] ?


Prove that the curves xy = 4 and x2 + y2 = 8 touch each other ?


Find the slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at t = 2 ?


Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?


The equation to the normal to the curve y = sin x at (0, 0) is ___________ .


The equation of the normal to the curve y = x(2 − x) at the point (2, 0) is ________________ .


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .


Any tangent to the curve y = 2x7 + 3x + 5 __________________ .


The normal to the curve x2 = 4y passing through (1, 2) is _____________ .


Find the equation of tangents to the curve y = cos(+ y), –2π ≤ x ≤ 2π that are parallel to the line + 2y = 0.


Show that the equation of normal at any point on the curve x = 3cos θ – cos3θ, y = 3sinθ – sin3θ is 4 (y cos3θ – x sin3θ) = 3 sin 4θ


The equation of the normal to the curve y = sinx at (0, 0) is ______.


Find the angle of intersection of the curves y = 4 – x2 and y = x2.


The point on the curves y = (x – 3)2 where the tangent is parallel to the chord joining (3, 0) and (4, 1) is ____________.


The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are


The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.


The normal of the curve given by the equation x = a(sinθ + cosθ), y = a(sinθ – cosθ) at the point θ is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×