Advertisements
Advertisements
Question
Find the equation of the tangent and the normal to the following curve at the indicated point \[y^2 = \frac{x^3}{4 - x}at \left( 2, - 2 \right)\] ?
Solution
\[y^2 =\frac{x^3}{4 - x}\]
\[\text { Differentiating both sides w.r.t.x}, \]
\[2y \frac{dy}{dx} = \frac{\left( 4 - x \right)\left( 3 x^2 \right) - x^3 \left( - 1 \right)}{\left( 4 - x \right)^2} = \frac{12 x^2 - 3 x^3 + x^3}{\left( 4 - x \right)^2} = \frac{12 x^2 - 2 x^3}{\left( 4 - x \right)^2}\]
\[\frac{dy}{dx} = \frac{12 x^2 - 2 x^3}{2y \left( 4 - x \right)^2}\]
\[\text { Given } \left( x_1 , y_1 \right) = \left( 2, - 2 \right)\]
\[\text { Slope of tangent,}m= \left( \frac{dy}{dx} \right)_\left( 2, - 2 \right) =\frac{48 - 16}{- 16}=-2\]
\[\text { Equation of tangent is },\]
\[y - y_1 = m\left( x - x_1 \right)\]
\[ \Rightarrow y + 2 = - 2 \left( x - 2 \right)\]
\[ \Rightarrow y + 2 = - 2x + 4\]
\[ \Rightarrow 2x + y - 2 = 0\]
\[\text { Equation of normal is },\]
\[y - y_1 = \frac{- 1}{m} \left( x - x_1 \right)\]
\[ \Rightarrow y + 2 = \frac{1}{2} \left( x - 2 \right)\]
\[ \Rightarrow 2y + 4 = x - 2\]
\[ \Rightarrow x - 2y - 6 = 0\]
APPEARS IN
RELATED QUESTIONS
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x3 at (1, 1)
Show that the tangents to the curve y = 7x3 + 11 at the points where x = 2 and x = −2 are parallel.
Find the equations of the tangent and normal to the hyperbola `x^2/a^2 - y^2/b^2` at the point `(x_0, y_0)`
The slope of the normal to the curve y = 2x2 + 3 sin x at x = 0 is
(A) 3
(B) 1/3
(C) −3
(D) `-1/3`
Show that the normal at any point θ to the curve x = a cosθ + a θ sinθ, y = a sinθ – aθ cosθ is at a constant distance from the origin.
Find the equations of the tangent and the normal, to the curve 16x2 + 9y2 = 145 at the point (x1, y1), where x1 = 2 and y1 > 0.
Find the slope of the tangent and the normal to the following curve at the indicted point x = a (θ − sin θ), y = a(1 − cos θ) at θ = π/2 ?
At what points on the curve y = 2x2 − x + 1 is the tangent parallel to the line y = 3x + 4?
Find the points on the curve \[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is parallel to the x-axis ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 + 4x + 1 at x = 3 ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( a\sec\theta, b\tan\theta \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4ax at (x1, y1)?
Find the equation of the normal to the curve x2 + 2y2 − 4x − 6y + 8 = 0 at the point whose abscissa is 2 ?
Show that the following set of curve intersect orthogonally y = x3 and 6y = 7 − x2 ?
Show that the following set of curve intersect orthogonally x2 + 4y2 = 8 and x2 − 2y2 = 4 ?
Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?
Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { and } xy = c^2\] ?
Write the coordinates of the point at which the tangent to the curve y = 2x2 − x + 1 is parallel to the line y = 3x + 9 ?
Write the equation of the tangent drawn to the curve \[y = \sin x\] at the point (0,0) ?
The equation to the normal to the curve y = sin x at (0, 0) is ___________ .
The angle of intersection of the curves xy = a2 and x2 − y2 = 2a2 is ______________ .
The equation of the normal to the curve x = a cos3 θ, y = a sin3 θ at the point θ = π/4 is __________ .
The slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at the point (2, −1) is _____________ .
The normal at the point (1, 1) on the curve 2y + x2 = 3 is _____________ .
The normal to the curve x2 = 4y passing through (1, 2) is _____________ .
Find the equation of tangents to the curve y = cos(x + y), –2π ≤ x ≤ 2π that are parallel to the line x + 2y = 0.
Find the angle of intersection of the curves y2 = 4ax and x2 = 4by.
The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______.
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other.
If the straight line x cosα + y sinα = p touches the curve `x^2/"a"^2 + y^2/"b"^2` = 1, then prove that a2 cos2α + b2 sin2α = p2.
The curve y = `x^(1/5)` has at (0, 0) ______.
The tangent to the parabola x2 = 2y at the point (1, `1/2`) makes with the x-axis an angle of ____________.
Find a point on the curve y = (x – 2)2. at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).
The normal at the point (1, 1) on the curve `2y + x^2` = 3 is
If the curves y2 = 6x, 9x2 + by2 = 16, cut each other at right angles then the value of b is ______.
The number of values of c such that the straight line 3x + 4y = c touches the curve `x^4/2` = x + y is ______.
The curve `(x/a)^n + (y/b)^n` = 2, touches the line `x/a + y/b` = 2 at the point (a, b) for n is equal to ______.
If the tangent to the conic, y – 6 = x2 at (2, 10) touches the circle, x2 + y2 + 8x – 2y = k (for some fixed k) at a point (α, β); then (α, β) is ______.