Advertisements
Advertisements
Question
Find the equation of the normal to the curve x2 + 2y2 − 4x − 6y + 8 = 0 at the point whose abscissa is 2 ?
Solution
Abscissa means the horizontal co-ordiante of a point.
Given that abscissa = 2.
i.e., x = 2
\[x^2 + 2 y^2 - 4x - 6y + 8 = 0 . . . \left( 1 \right)\]
\[\text { Differentiating both sides w.r.t.x }, \]
\[2x + 4y\frac{dy}{dx} - 4 - 6\frac{dy}{dx} = 0\]
\[ \Rightarrow \frac{dy}{dx}\left( 4y - 6 \right) = 4 - 2x\]
\[ \Rightarrow \frac{dy}{dx} = \frac{4 - 2x}{4y - 6} = \frac{2 - x}{2y - 3}\]
\[\text { When }x=2,\text { from } (1), \text { we get }\]
\[4 + 2 y^2 - 8 - 6y + 8 = 0\]
\[ \Rightarrow 2 y^2 - 6y + 4 = 0\]
\[ \Rightarrow y^2 - 3y + 2 = 0\]
\[ \Rightarrow \left( y - 1 \right)\left( y - 2 \right) = 0\]
\[ \Rightarrow y = 1 ory = 2\]
\[\text { Case }-1:y = 1\]
\[\text { Slope of tangent } = \left( \frac{dy}{dx} \right)_\left( 2, 1 \right) =\frac{0}{- 1}=0\]
\[\left( x_1 , y_1 \right) = \left( 2, 1 \right)\]
\[\text { Equation of normal is },\]
\[y - y_1 = \frac{- 1}{m} \left( x - x_1 \right)\]
\[ \Rightarrow y - 1 = \frac{- 1}{0} \left( x - 2 \right)\]
\[ \Rightarrow x - 2 = 0\]
\[ \Rightarrow x = 2\]
\[\text { Case}-2:y = 2\]
\[\text { Slope of tangent} = \left( \frac{dy}{dx} \right)_\left( 2, 2 \right) =\frac{0}{1}=0\]
\[\left( x_1 , y_1 \right) = \left( 2, 2 \right)\]
\[\text { Equation of normal is },\]
\[y - y_1 = \frac{- 1}{m} \left( x - x_1 \right)\]
\[ \Rightarrow y - 2 = \frac{- 1}{0} \left( x - 2 \right)\]
\[ \Rightarrow x - 2 = 0\]
\[ \Rightarrow x = 2\]
In both cases, the equation of normal is x = 2
APPEARS IN
RELATED QUESTIONS
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is `6sqrt3` r.
Find the slope of the tangent to curve y = x3 − x + 1 at the point whose x-coordinate is 2.
Find the slope of the normal to the curve x = acos3θ, y = asin3θ at `theta = pi/4`
Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x2 at (0, 0)
Find the points on the curve y = x3 at which the slope of the tangent is equal to the y-coordinate of the point.
Find the points on the curve y = `4x^3 - 3x + 5` at which the equation of the tangent is parallel to the x-axis.
Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?
At what points on the curve y = 2x2 − x + 1 is the tangent parallel to the line y = 3x + 4?
Find the point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slop is \[- \frac{1}{6}\] ?
Find the points on the curve x2 + y2 = 13, the tangent at each one of which is parallel to the line 2x + 3y = 7 ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x4 − 6x3 + 13x2 − 10x + 5 at x = 1?
Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?
Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( a\sec\theta, b\tan\theta \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point xy = c2 at \[\left( ct, \frac{c}{t} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = at2, y = 2at at t = 1 ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = a(θ + sinθ), y = a(1 − cosθ) at θ ?
Find an equation of normal line to the curve y = x3 + 2x + 6 which is parallel to the line x+ 14y + 4 = 0 ?
Determine the equation(s) of tangent (s) line to the curve y = 4x3 − 3x + 5 which are perpendicular to the line 9y + x + 3 = 0 ?
Find the equation of the tangent to the curve \[y = \sqrt{3x - 2}\] which is parallel to the 4x − 2y + 5 = 0 ?
Find the equation of the tangents to the curve 3x2 – y2 = 8, which passes through the point (4/3, 0) ?
Show that the curves \[\frac{x^2}{a^2 + \lambda_1} + \frac{y^2}{b^2 + \lambda_1} = 1 \text { and } \frac{x^2}{a^2 + \lambda_2} + \frac{y^2}{b^2 + \lambda_2} = 1\] intersect at right angles ?
Write the angle made by the tangent to the curve x = et cos t, y = et sin t at \[t = \frac{\pi}{4}\] with the x-axis ?
Write the angle between the curves y = e−x and y = ex at their point of intersections ?
The equation of the normal to the curve x = a cos3 θ, y = a sin3 θ at the point θ = π/4 is __________ .
If the curves y = 2 ex and y = ae−x intersect orthogonally, then a = _____________ .
The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .
The slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at the point (2, −1) is _____________ .
The normal at the point (1, 1) on the curve 2y + x2 = 3 is _____________ .
Find the equation of tangent to the curve y = x2 +4x + 1 at (-1 , -2).
Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are parallel to the line x + 3y = 4.
The slope of tangent to the curve x = t2 + 3t – 8, y = 2t2 – 2t – 5 at the point (2, –1) is ______.
The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 – 2 = 0 intersect at an angle of ______.
The slope of the tangentto the curve `x= t^2 + 3t - 8, y = 2t^2 - 2t - 5` at the point `(2, -1)` is
The normal at the point (1, 1) on the curve `2y + x^2` = 3 is
An edge of variable cube is increasing at the rate of 3 cm/s. The volume of the cube increasing fast when the edge is 10 cm long is ______ cm3/s.
The normals to the curve x = a(θ + sinθ), y = a(1 – cosθ) at the points θ = (2n + 1)π, n∈I are all ______.
If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points `(3cosθ, sqrt(3) sinθ)` and `(-3sinθ, sqrt(3) cos θ); θ ∈(0, π/2)`; then `(2 cot β)/(sin 2θ)` is equal to ______.