Advertisements
Advertisements
Question
Find the equation of the tangent and the normal to the following curve at the indicated point\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ at }\left( a\cos\theta, b\sin\theta \right)\] ?
Solution
\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\]
\[\text { Differentiating both sides w.r.t. x }, \]
\[ \Rightarrow \frac{2x}{a^2} + \frac{2y}{b^2}\frac{dy}{dx} = 0\]
\[ \Rightarrow \frac{2y}{b^2}\frac{dy}{dx} = \frac{- 2x}{a^2}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- x b^2}{y a^2}\]
\[\text { Slope of tangent },m= \left( \frac{dy}{dx} \right)_\left( a \cos \theta, b \sin \theta \right) =\frac{- a \cos \theta \left( b^2 \right)}{b \sin \theta \left( a^2 \right)}=\frac{- b \cos \theta}{a \sin \theta}\]
\[\text { Given } \left( x_1 , y_1 \right) = \left( a \cos \theta, b \sin \theta \right)\]
\[\text { Equation of tangent is },\]
\[y - y_1 = m \left( x - x_1 \right)\]
\[ \Rightarrow y - b \sin \theta = \frac{- b \cos \theta}{a \sin \theta}\left( x - a \cos \theta \right)\]
\[ \Rightarrow ay \sin \theta - \text { ab }\sin^2 \theta = - bx \cos \theta + ab \cos^2 \theta\]
\[ \Rightarrow bx \cos \theta + ay \sin \theta = ab\]
\[\text{ Dividing by ab},\]
\[ \Rightarrow \frac{x}{a}\cos \theta + \frac{y}{b}\sin \theta = 1\]
\[\text { Equation of normal is} ,\]
\[y - y_1 = \frac{- 1}{m} \left( x - x_1 \right)\]
\[ \Rightarrow y - b \sin \theta = \frac{a \sin \theta}{b \cos \theta}\left( x - a \cos \theta \right)\]
\[ \Rightarrow by \cos \theta - b^2 \sin \theta \cos \theta = ax \sin \theta - a^2 \sin \theta \cos \theta\]
\[ \Rightarrow ax \sin \theta - by \cos \theta = \left( a^2 - b^2 \right)\sin \theta \cos \theta\]
\[\text { Dividing by }\sin \theta \cos \theta, \]
\[ax \sec \theta - \text { by }\ cosec \theta = \left( a^2 - b^2 \right)\]
APPEARS IN
RELATED QUESTIONS
Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.
The equation of tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x – 5. Find the values of a and b.
Prove that the least perimeter of an isosceles triangle in which a circle of radius r can be inscribed is `6sqrt3` r.
Find the slope of the normal to the curve x = acos3θ, y = asin3θ at `theta = pi/4`
Find the equation of all lines having slope −1 that are tangents to the curve `y = 1/(x -1), x != 1`
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (0, 5)
Find the values of a and b if the slope of the tangent to the curve xy + ax + by = 2 at (1, 1) is 2 ?
Find a point on the curve y = x3 − 3x where the tangent is parallel to the chord joining (1, −2) and (2, 2) ?
At what point of the curve y = x2 does the tangent make an angle of 45° with the x-axis?
Find the point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slop is \[- \frac{1}{6}\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point y2 = 4x at (1, 2) ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( \sqrt{2}a, b \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = a(θ + sinθ), y = a(1 − cosθ) at θ ?
Find the equation of the tangent and the normal to the following curve at the indicated points x = asect, y = btant at t ?
Find the equation of the tangent line to the curve y = x2 + 4x − 16 which is parallel to the line 3x − y + 1 = 0 ?
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0 ?
Find the equation of the tangent to the curve x = sin 3t, y = cos 2t at
\[t = \frac{\pi}{4}\] ?
Find the angle of intersection of the following curve y = x2 and x2 + y2 = 20 ?
Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?
Show that the following set of curve intersect orthogonally x2 + 4y2 = 8 and x2 − 2y2 = 4 ?
Show that the following curve intersect orthogonally at the indicated point x2 = 4y and 4y + x2 = 8 at (2, 1) ?
Show that the following curve intersect orthogonally at the indicated point y2 = 8x and 2x2 + y2 = 10 at \[\left( 1, 2\sqrt{2} \right)\] ?
Prove that the curves xy = 4 and x2 + y2 = 8 touch each other ?
If the tangent line at a point (x, y) on the curve y = f(x) is parallel to x-axis, then write the value of \[\frac{dy}{dx}\] ?
Write the equation of the normal to the curve y = x + sin x cos x at \[x = \frac{\pi}{2}\] ?
The point on the curve y2 = x where tangent makes 45° angle with x-axis is ______________ .
At what point the slope of the tangent to the curve x2 + y2 − 2x − 3 = 0 is zero
If the line y = x touches the curve y = x2 + bx + c at a point (1, 1) then _____________ .
The angle of intersection of the parabolas y2 = 4 ax and x2 = 4ay at the origin is ____________ .
The angle of intersection of the curves y = 2 sin2 x and y = cos 2 x at \[x = \frac{\pi}{6}\] is ____________ .
Find the equation of tangent to the curve `y = sqrt(3x -2)` which is parallel to the line 4x − 2y + 5 = 0. Also, write the equation of normal to the curve at the point of contact.
The two curves x3 – 3xy2 + 2 = 0 and 3x2y – y3 = 2 ______.
The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.
For which value of m is the line y = mx + 1 a tangent to the curve y2 = 4x?
The line y = x + 1 is a tangent to the curve y2 = 4x at the point
The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are
The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is
If the tangent to the curve y = x + siny at a point (a, b) is parallel to the line joining `(0, 3/2)` and `(1/2, 2)`, then ______.
If the tangent to the conic, y – 6 = x2 at (2, 10) touches the circle, x2 + y2 + 8x – 2y = k (for some fixed k) at a point (α, β); then (α, β) is ______.