Advertisements
Advertisements
Question
Find the point on the curve y = 3x2 + 4 at which the tangent is perpendicular to the line whose slop is \[- \frac{1}{6}\] ?
Solution
Let (x1, y1) be the required point.
Slope of the given line = \[\frac{- 1}{6}\]
∴ Slope of the line perpendicular to it = 6
\[\text { Since, the point lies on the curve } . \]
\[\text { Hence}, y_1 = 3 {x_1}^2 + 4\]
\[\text { Now,} y = 3 x^2 + 4\]
\[ \therefore \frac{dy}{dx} = 6x\]
\[\text { Now, }\]
\[\text { Slope of the tangent at }\left( x_1 , y_1 \right)= \left( \frac{dy}{dx} \right)_\left( x_1 , y_1 \right) =6 x_1 \]
\[\text { Slope of the tangent at }\left( x_1 , y_1 \right)= \text{Slope of the given line [Given]}\]
\[ \therefore 6 x_1 = 6\]
\[ \Rightarrow x_1 = 1\]
\[\text {and }\]
\[ y_1 = 3 {x_1}^2 + 4 = 3 + 4 = 7\]
\[\text { Thus, the required point is }\left( 1, 7 \right).\]
APPEARS IN
RELATED QUESTIONS
The equation of tangent at (2, 3) on the curve y2 = ax3 + b is y = 4x – 5. Find the values of a and b.
Find the equation of tangents to the curve y= x3 + 2x – 4, which are perpendicular to line x + 14y + 3 = 0.
Find a point on the curve y = (x − 2)2 at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).
Find the equation of all lines having slope −1 that are tangents to the curve `y = 1/(x -1), x != 1`
Find the equation of all lines having slope 2 which are tangents to the curve `y = 1/(x- 3), x != 3`
The line y = mx + 1 is a tangent to the curve y2 = 4x if the value of m is
(A) 1
(B) 2
(C) 3
(D) 1/2
Find the points on the curve y2 = 2x3 at which the slope of the tangent is 3 ?
At what points on the circle x2 + y2 − 2x − 4y + 1 = 0, the tangent is parallel to x-axis?
Find the points on the curve x2 + y2 = 13, the tangent at each one of which is parallel to the line 2x + 3y = 7 ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { at } \left( a\sec\theta, b\tan\theta \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[c^2 \left( x^2 + y^2 \right) = x^2 y^2 \text { at }\left( \frac{c}{\cos\theta}, \frac{c}{\sin\theta} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point xy = c2 at \[\left( ct, \frac{c}{t} \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { at } \left( x_1 , y_1 \right)\] ?
Find the equation of the tangent and the normal to the following curve at the indicated point 4x2 + 9y2 = 36 at (3cosθ, 2sinθ) ?
Find an equation of normal line to the curve y = x3 + 2x + 6 which is parallel to the line x+ 14y + 4 = 0 ?
Find the equations of all lines of slope zero and that are tangent to the curve \[y = \frac{1}{x^2 - 2x + 3}\] ?
Find the equation of the tangent to the curve \[y = \sqrt{3x - 2}\] which is parallel to the 4x − 2y + 5 = 0 ?
Find the equation of the tangents to the curve 3x2 – y2 = 8, which passes through the point (4/3, 0) ?
Show that the curves 2x = y2 and 2xy = k cut at right angles, if k2 = 8 ?
Find the condition for the following set of curve to intersect orthogonally \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text { and } xy = c^2\] ?
Show that the curves \[\frac{x^2}{a^2 + \lambda_1} + \frac{y^2}{b^2 + \lambda_1} = 1 \text { and } \frac{x^2}{a^2 + \lambda_2} + \frac{y^2}{b^2 + \lambda_2} = 1\] intersect at right angles ?
Find the point on the curve y = x2 − 2x + 3, where the tangent is parallel to x-axis ?
Find the coordinates of the point on the curve y2 = 3 − 4x where tangent is parallel to the line 2x + y− 2 = 0 ?
Write the slope of the normal to the curve \[y = \frac{1}{x}\] at the point \[\left( 3, \frac{1}{3} \right)\] ?
Write the equation of the normal to the curve y = cos x at (0, 1) ?
The equation of the normal to the curve y = x + sin x cos x at x = `π/2` is ___________ .
The slope of the tangent to the curve x = t2 + 3 t − 8, y = 2t2 − 2t − 5 at point (2, −1) is ________________ .
The normal to the curve x2 = 4y passing through (1, 2) is _____________ .
Find the condition for the curves `x^2/"a"^2 - y^2/"b"^2` = 1; xy = c2 to interest orthogonally.
Find the condition that the curves 2x = y2 and 2xy = k intersect orthogonally.
Find the equation of the normal lines to the curve 3x2 – y2 = 8 which are parallel to the line x + 3y = 4.
The tangent to the parabola x2 = 2y at the point (1, `1/2`) makes with the x-axis an angle of ____________.
The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are
Let `y = f(x)` be the equation of the curve, then equation of normal is
Which of the following represent the slope of normal?
An edge of variable cube is increasing at the rate of 3 cm/s. The volume of the cube increasing fast when the edge is 10 cm long is ______ cm3/s.
If the curves y2 = 6x, 9x2 + by2 = 16, cut each other at right angles then the value of b is ______.
The curve `(x/a)^n + (y/b)^n` = 2, touches the line `x/a + y/b` = 2 at the point (a, b) for n is equal to ______.
If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points `(3cosθ, sqrt(3) sinθ)` and `(-3sinθ, sqrt(3) cos θ); θ ∈(0, π/2)`; then `(2 cot β)/(sin 2θ)` is equal to ______.