English

Find the Equation Of the Tangents to the Curve 3x2 – Y2 = 8, Which Passes Through the Point (4/3, 0) ? - Mathematics

Advertisements
Advertisements

Question

Find the equation of  the tangents to the curve 3x2 – y2 = 8, which passes through the point (4/3, 0) ?

Solution

We have,
3x2 – y2 = 8                   ...(i)
Differentiating both sides w.r.t x, we get

\[6x - 2y\frac{dy}{dx} = 0\]

\[ \Rightarrow 2y\frac{dy}{dx} = 6x\]

\[ \Rightarrow \frac{dy}{dx} = \frac{6x}{2y}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{3x}{y}\]

Let tangent at (hk) pass through 

\[\left( \frac{4}{3}, 0 \right)\] .

Since, (h, k) lies on (i), we get

\[3 h^2 - k^2 = 8 . . . (ii)\]

Slope of tangent at (h, k) = \[\frac{3h}{k}\]

The equation of tangent at (hk) is given by,

\[(y - k) = \frac{3h}{k}(x - h) . . . (iii)\]

Since, the tangent passess through 

\[\left( \frac{4}{3}, 0 \right)\] .

\[\therefore (0 - k) = \frac{3h}{k}\left( \frac{4}{3} - h \right)\]

\[ \Rightarrow - k = \frac{4h}{k} - \frac{3 h^2}{k}\]

\[ \Rightarrow - k^2 = 4h - 3 h^2\]

\[\Rightarrow 8 - 3 h^2 = 4h - 3 h^2 \left[ \text { From } \left( ii \right) \right]\]

\[ \Rightarrow 8 = 4h\]

\[ \Rightarrow h = 2\]

Using (ii), we get

\[12 - k^2 = 8\]
\[ \Rightarrow k^2 = 4\]
\[ \Rightarrow k = \pm 2\]

So, the points on curve (i) at which tangents pass through 

\[\left( \frac{4}{3}, 0 \right)\] are

\[\left( 2, \pm 2 \right)\] .

Now, from (iii), the equation of tangents are

\[(y - 2) = \frac{6}{2}(x - 2), \text { or }, 3x - y - 4 = 0, \text { and }\]
\[(y + 2) = \frac{6}{- 2}(x - 2), \text { or }, 3x + y - 4 = 0\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Tangents and Normals - Exercise 16.2 [Page 29]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 16 Tangents and Normals
Exercise 16.2 | Q 21 | Page 29

RELATED QUESTIONS

Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.


Show that the equation of normal at any point t on the curve x = 3 cos t – cos3t and y = 3 sin t – sin3t is 4 (y cos3t – sin3t) = 3 sin 4t


Find the equations of the tangent and normal to the curve `x^2/a^2−y^2/b^2=1` at the point `(sqrt2a,b)` .


Find the slope of the tangent to curve y = x3 − + 1 at the point whose x-coordinate is 2.


Find the point on the curve y = x3 − 11x + 5 at which the tangent is y = x − 11.

 

Find the equations of the tangent and normal to the given curves at the indicated points:

y = x2 at (0, 0)


For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.


Find the equation of the normal at the point (am2am3) for the curve ay2 = x3.


Find the slope of the tangent and the normal to the following curve at the indicted point \[y = \sqrt{x} \text { at }x = 9\] ?


Find the points on the curve\[\frac{x^2}{4} + \frac{y^2}{25} = 1\] at which the tangent is  parallel to the y-axis ?


Find the equation of the tangent to the curve \[\sqrt{x} + \sqrt{y} = a\] at the point \[\left( \frac{a^2}{4}, \frac{a^2}{4} \right)\] ?


 Find the equation of the tangent and the normal to the following curve at the indicated point  x2 = 4y at (2, 1) ?


Find the equation of the tangent and the normal to the following curve at the indicated point  y2 = 4ax at (x1, y1)?


Find the equation of the tangent line to the curve y = x2 + 4x − 16 which is parallel to the line 3x − y + 1 = 0 ?


Find the equation of the tangent to the curve  \[y = \sqrt{3x - 2}\] which is parallel to the 4x − 2y + 5 = 0 ?


Find the angle of intersection of the following curve \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and x2 + y2 = ab ?


Show that the following set of curve intersect orthogonally x3 − 3xy2 = −2 and 3x2y − y3 = 2 ?


Write the angle between the curves y2 = 4x and x2 = 2y − 3 at the point (1, 2) ?


If the tangent to the curve x = a t2, y = 2 at is perpendicular to x-axis, then its point of contact is _____________ .


The point on the curve y2 = x where tangent makes 45° angle with x-axis is ____________________ .


The point at the curve y = 12x − x2 where the slope of the tangent is zero will be _____________ .


The equations of tangent at those points where the curve y = x2 − 3x + 2 meets x-axis are _______________ .


The slope of the tangent to the curve x = t2 + 3t − 8, y = 2t2 − 2t − 5 at the point (2, −1) is _____________ .


The line y = mx + 1 is a tangent to the curve y2 = 4x, if the value of m is ________________ .


Show that the equation of normal at any point on the curve x = 3cos θ – cos3θ, y = 3sinθ – sin3θ is 4 (y cos3θ – x sin3θ) = 3 sin 4θ


Find the co-ordinates of the point on the curve `sqrt(x) + sqrt(y)` = 4 at which tangent is equally inclined to the axes


Show that the line `x/"a" + y/"b"` = 1, touches the curve y = b · e– x/a at the point where the curve intersects the axis of y


The curve y = `x^(1/5)` has at (0, 0) ______.


The equation of normal to the curve 3x2 – y2 = 8 which is parallel to the line x + 3y = 8 is ______.


The points at which the tangents to the curve y = x3 – 12x + 18 are parallel to x-axis are ______.


The points on the curve `"x"^2/9 + "y"^2/16` = 1 at which the tangents are parallel to the y-axis are:


The slope of the tangent to the curve x = a sin t, y = a{cot t + log(tan `"t"/2`)} at the point ‘t’ is ____________.


Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0.


The Slope of the normal to the curve `y = 2x^2 + 3 sin x` at `x` = 0 is


The line is y = x + 1 is a tangent to the curve y2 = 4x at the point.


If the curves y2 = 6x, 9x2 + by2 = 16, cut each other at right angles then the value of b is ______.


The curve `(x/a)^n + (y/b)^n` = 2, touches the line `x/a + y/b` = 2 at the point (a, b) for n is equal to ______.


If the tangent to the conic, y – 6 = x2 at (2, 10) touches the circle, x2 + y2 + 8x – 2y = k (for some fixed k) at a point (α, β); then (α, β) is ______.


Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×