Advertisements
Advertisements
Question
Find the equation to the tangent at (0, 0) on the curve y = 4x2 – 2x3
Solution
y = 4x2 – 2x3
`dy/dx = 8x - 6x^2`
Let P(x1, y1) be the point of contact.
∴ Slope of the tangents = `8x_1 - 6x_1^2`
Tangent equation: y – y1 = `(8x_1 - 6x_1^2)(x - x_1)`
∵ The tangent passes through the origin
`y_1 = (8x_1 - 6x_1^2)x_1`
Now, `y_1 = 4x_1^2 - 2x_1^3`
= `8x_1^2 - 6x_1^3`
`\implies` 4 – 2x1 = 8 – 6x1
`\implies` 4x1 = 4
`\implies` x1 = 1
`\implies` y1 = 2
The point on the curve is (1, 2)
APPEARS IN
RELATED QUESTIONS
Find the equation of the normal at a point on the curve x2 = 4y which passes through the point (1, 2). Also find the equation of the corresponding tangent.
Find the equations of the tangent and normal to the given curves at the indicated points:
y = x4 − 6x3 + 13x2 − 10x + 5 at (0, 5)
Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).
Find the slope of the tangent and the normal to the following curve at the indicted point x = a cos3 θ, y = a sin3 θ at θ = π/4 ?
Find the points on the curve \[\frac{x^2}{9} + \frac{y^2}{16} = 1\] at which the tangent is parallel to y-axis ?
Find the points on the curve y = x3 where the slope of the tangent is equal to the x-coordinate of the point ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = x2 at (0, 0) ?
Find the equation of the tangent and the normal to the following curve at the indicated point y = 2x2 − 3x − 1 at (1, −2) ?
Find the equation of the tangent and the normal to the following curve at the indicated point \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text { at } \left( x_1 , y_1 \right)\] ?
Find the equation of the tangent to the curve x = θ + sin θ, y = 1 + cos θ at θ = π/4 ?
Find the equation of the tangent and the normal to the following curve at the indicated points \[x = \frac{2 a t^2}{1 + t^2}, y = \frac{2 a t^3}{1 + t^2}\text { at } t = \frac{1}{2}\] ?
Find the angle of intersection of the following curve 2y2 = x3 and y2 = 32x ?
Find the angle of intersection of the following curve x2 + y2 = 2x and y2 = x ?
Show that the following curve intersect orthogonally at the indicated point x2 = y and x3 + 6y = 7 at (1, 1) ?
Write the coordinates of the point on the curve y2 = x where the tangent line makes an angle \[\frac{\pi}{4}\] with x-axis ?
Write the equation of the normal to the curve y = x + sin x cos x at \[x = \frac{\pi}{2}\] ?
Write the angle between the curves y2 = 4x and x2 = 2y − 3 at the point (1, 2) ?
Write the coordinates of the point at which the tangent to the curve y = 2x2 − x + 1 is parallel to the line y = 3x + 9 ?
Write the equation of the normal to the curve y = cos x at (0, 1) ?
The equation to the normal to the curve y = sin x at (0, 0) is ___________ .
At what point the slope of the tangent to the curve x2 + y2 − 2x − 3 = 0 is zero
The angle of intersection of the curves xy = a2 and x2 − y2 = 2a2 is ______________ .
Find the condition for the curves `x^2/"a"^2 - y^2/"b"^2` = 1; xy = c2 to interest orthogonally.
The tangent to the curve given by x = et . cost, y = et . sint at t = `pi/4` makes with x-axis an angle ______.
Find the angle of intersection of the curves y = 4 – x2 and y = x2.
At what points on the curve x2 + y2 – 2x – 4y + 1 = 0, the tangents are parallel to the y-axis?
The tangent to the curve y = 2x2 - x + 1 is parallel to the line y = 3x + 9 at the point ____________.
Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is parallel to the line 2x − y + 9 = 0.
The points at which the tangent passes through the origin for the curve y = 4x3 – 2x5 are
If m be the slope of a tangent to the curve e2y = 1 + 4x2, then ______.